Panigrahy A, Nelson MD, Bluml S: Magnetic resonance spectroscopy in pediatric neuroradiology: clinical and research applications. Pediatr Radiol. 2010, 40: 3-30. 10.1007/s00247-009-1450-z.
Article
PubMed
Google Scholar
Robertson NJ, Cox IJ: Magnetic resonance spectroscopy of the neonatal brain. MRI of the Neonatal Brain. Edited by: Rutherford MA. 2002, London: WB Saunders, 295-313. 4
Google Scholar
Thayyil S, Chandrasekaran M, Taylor A, Bainbridge A, Cady EB, Chong WK, Murad S, Omar RZ, Robertson NJ: Cerebral magnetic resonance biomarkers in neonatal encephalopathy: a meta-analysis. Pediatrics. 2010, 125: e382-e395. 10.1542/peds.2009-1046.
Article
PubMed
Google Scholar
Wilkinson D: MRI and withdrawal of life support from newborn infants with hypoxic-ischemic encephalopathy. Pediatrics. 2010, 126: e451-e458. 10.1542/peds.2009-3067.
Article
PubMed
Google Scholar
Lijmer JG, Mol BW, Heisterkamp S, Bonsel GJ, Prins MH, van der Meulen JH, Bossuyt PM: Empirical evidence of design-related bias in studies of diagnostic tests. JAMA. 1999, 282: 1061-1066. 10.1001/jama.282.11.1061.
Article
CAS
PubMed
Google Scholar
The University of York Centre for Reviews and Dissemination. [http://www.crd.york.ac.uk/crdweb/]
The Medion Database. [http://www.mediondatabase.nl]
Doust JA, Pietrzak E, Sanders S, Glasziou PP: Identifying studies for systematic reviews of diagnostic tests was difficult due to the poor sensitivity and precision of methodologic filters and the lack of information in the abstract. J Clin Epidemiol. 2005, 58: 444-449. 10.1016/j.jclinepi.2004.09.011.
Article
CAS
PubMed
Google Scholar
Leeflang MM, Scholten RJ, Rutjes AW, Reitsma JB, Bossuyt PM: Use of methodological search filters to identify diagnostic accuracy studies can lead to the omission of relevant studies. J Clin Epidemiol. 2006, 59: 234-240. 10.1016/j.jclinepi.2005.07.014.
Article
CAS
PubMed
Google Scholar
Alderliesten T, De Vries LS, Benders MJNL, Koopman C, Groenendaal F: MR imaging and outcome of term neonates with perinatal asphyxia: value of diffusion-weighted MR imaging and 1H MR spectroscopy. Radiology. 2011, 261: 235-242. 10.1148/radiol.11110213.
Article
PubMed
Google Scholar
Amess PN, Penrice J, Wylezinska M, Lorek A, Townsend J, Wyatt JS, Amiel-Tison C, Cady EB, Stewart A: Early brain proton magnetic resonance spectroscopy and neonatal neurology related to neurodevelopmental outcome at 1 year in term infants after presumed hypoxic-ischaemic brain injury. Dev Med Child Neurol. 1999, 41: 436-445. 10.1017/S0012162299000973.
CAS
PubMed
Google Scholar
Ancora G, Soffritti S, Lodi R, Tonon C, Grandi S, Locatelli C, Nardi L, Bisacchi N, Testa C, Tani G, Ambrosetto P, Faldella G: A combined a-EEG and MR spectroscopy study in term newborns with hypoxic-ischemic encephalopathy. Brain Dev. 2010, 32: 835-842. 10.1016/j.braindev.2009.11.008.
Article
PubMed
Google Scholar
Barkovich AJ, Baranski K, Vigneron D, Partridge JC, Hallam DK, Hajnal BL, Ferriero DM: Proton MR spectroscopy for the evaluation of brain injury in asphyxiated, term neonates. Am J Neuroradiol. 1999, 20: 1399-1405.
CAS
PubMed
Google Scholar
Bartha AI, Foster-Barber A, Miller SP, Vigneron DB, Glidden DV, Barkovich AJ, Ferriero DM: Neonatal encephalopathy: association of cytokines with MR spectroscopy and outcome. Pediatr Res. 2004, 56: 960-966. 10.1203/01.PDR.0000144819.45689.BB.
Article
CAS
PubMed
Google Scholar
Boichot C, Walker PM, Durand C, Grimaldi M, Chapuis S, Gouyon JB, Brunotte F: Term neonate prognoses after perinatal asphyxia: contributions of MR imaging, MR spectroscopy, relaxation times, and apparent diffusion coefficients. Radiology. 2006, 239: 839-848. 10.1148/radiol.2393050027.
Article
PubMed
Google Scholar
Brissaud O, Chateil J-F, Bordessoules M, Brun M: Chemical shift imaging and localised magnetic resonance spectroscopy in full-term asphyxiated neonates. Pediatr Radiol. 2005, 35: 998-1005. 10.1007/s00247-005-1524-5.
Article
PubMed
Google Scholar
Cady EB: Metabolite concentrations and relaxation in perinatal cerebral hypoxic-ischemic injury. Neurochem Res. 1996, 21: 1043-1052. 10.1007/BF02532414.
Article
CAS
PubMed
Google Scholar
Chateil JF, Quesson B, Brun M, Thiaudiere E, Sarlangue J, Delalande C, Billeaud C, Canioni P, Diard F: Localised proton magnetic resonance spectroscopy of the brain after perinatal hypoxia: a preliminary report. Pediatr Radiol. 1999, 29: 199-205. 10.1007/s002470050572.
Article
CAS
PubMed
Google Scholar
Cheong JLY, Cady EB, Penrice J, Wyatt JS, Cox IJ, Robertson NJ: Proton MR spectroscopy in neonates with perinatal cerebral hypoxic-ischemic injury: metabolite peak-area ratios, relaxation times, and absolute concentrations. Am J Neuroradiol. 2006, 27: 1546-1554.
CAS
PubMed
Google Scholar
Groenendaal F, Van Der Grond J, Van Haastert IC, Eken P, Mali WPTM, De Vries LS: Results of cerebral proton magnetic resonance spectroscopy in neonates with asphyxia and neuromotor development. Ned Tijdschr Geneeskd. 1996, 140: 255-259.
CAS
PubMed
Google Scholar
Groenendaal F, Veenhoven RH, van der Grond J, Jansen GH, Witkamp TD, de Vries LS: Cerebral lactate and N-acetyl-aspartate/choline ratios in asphyxiated full-term neonates demonstrated in vivo using proton magnetic resonance spectroscopy. Pediatr Res. 1994, 35: 148-151. 10.1203/00006450-199402000-00004.
Article
CAS
PubMed
Google Scholar
Hanrahan JD, Cox IJ, Azzopardi D, Cowan FM, Sargentoni J, Bell JD, Bryant DJ, Edwards AD: Relation between proton magnetic resonance spectroscopy within 18 hours of birth asphyxia and neurodevelopment at 1 year of age. Dev Med Child Neurol. 1999, 41: 76-82. 10.1017/S0012162299000171.
Article
CAS
PubMed
Google Scholar
Hanrahan JD, Cox IJ, Edwards AD, Cowan FM, Sargentoni J, Bell JD, Bryant DJ, Rutherford MA, Azzopardi D: Persistent increases in cerebral lactate concentration after birth asphyxia. Pediatr Res. 1998, 44: 304-311. 10.1203/00006450-199809000-00007.
Article
CAS
PubMed
Google Scholar
Kadri M, Shu S, Holshouser B, Deming D, Hopper A, Peverini R, Ashwal S: Proton magnetic resonance spectroscopy improves outcome prediction in perinatal CNS insults. J Perinatol. 2003, 23: 181-185. 10.1038/sj.jp.7210913.
Article
CAS
PubMed
Google Scholar
Khong PL, Tse C, Wong IYC, Lam BCC, Cheung PT, Goh WHS, Kwong NS, Ooi GC: Diffusion-weighted imaging and proton magnetic resonance spectroscopy in perinatal hypoxic-ischemic encephalopathy: association with neuromotor outcome at 18 months of age. J Child Neurol. 2004, 19: 872-881.
PubMed
Google Scholar
L’Abee C, De Vries LS, Van Der Grond J, Groenendaal F: Early diffusion-weighted MRI and 1H-magnetic resonance spectroscopy in asphyxiated full-term neonates. Biol Neonate. 2005, 88: 306-312. 10.1159/000087628.
Article
PubMed
Google Scholar
Leth H, Toft PB, Peitersen B, Lou HC, Henriksen O: Use of brain lactate levels to predict outcome after perinatal asphyxia. Acta Paediatr. 1996, 85: 859-864. 10.1111/j.1651-2227.1996.tb14168.x.
Article
CAS
PubMed
Google Scholar
Meyer-Witte S, Brissaud O, Brun M, Lamireau D, Bordessoules M, Chateil JF: Prognostic value of MR in term neonates with neonatal hypoxic-ischemic encephalopath: MRI score and spectroscopy. About 26 cases. Arch Pediatr. 2008, 15: 9-23. 10.1016/j.arcped.2007.08.027.
Article
CAS
PubMed
Google Scholar
Miller SP, Newton N, Ferriero DM, Partridge JC, Glidden DV, Barnwell A, Chuang NA, Vigneron DB, Barkovich AJ: Predictors of 30-month outcome after perinatal depression: role of proton MRS and socioeconomic factors. Pediatr Res. 2002, 52: 71-77. 10.1203/00006450-200207000-00014.
Article
PubMed
Google Scholar
Peden CJ, Rutherford MA, Sargentoni J, Cox IJ, Bryant DJ, Dubowitz LM: Proton spectroscopy of the neonatal brain following hypoxic-ischaemic injury. Dev Med Child Neurol. 1993, 35: 502-510.
Article
CAS
PubMed
Google Scholar
Penrice J, Cady EB, Lorek A, Wylezinska M, Amess PN, Aldridge RF, Stewart A, Wyatt JS, Reynolds EO: Proton magnetic resonance spectroscopy of the brain in normal preterm and term infants, and early changes after perinatal hypoxia-ischemia. Pediatr Res. 1996, 40: 6-14. 10.1203/00006450-199607000-00002.
Article
CAS
PubMed
Google Scholar
Robertson NJ, Cowan FM, Cox IJ, Edwards AD: Brain alkaline intracellular pH after neonatal encephalopathy. Ann Neurol. 2002, 52: 732-742. 10.1002/ana.10365.
Article
CAS
PubMed
Google Scholar
Robertson NJ, Cox IJ, Cowan FM, Counsell SJ, Azzopardi D, Edwards AD: Cerebral intracellular lactic alkalosis persisting months after neonatal encephalopathy measured by magnetic resonance spectroscopy. Pediatr Res. 1999, 46: 287-296. 10.1203/00006450-199909000-00007.
Article
CAS
PubMed
Google Scholar
Robertson NJ, Lewis RH, Cowan FM, Allsop JM, Counsell SJ, Edwards AD, Cox IJ: Early increases in brain myo-inositol measured by proton magnetic resonance spectroscopy in term infants with neonatal encephalopathy. Pediatr Res. 2001, 50: 692-700. 10.1203/00006450-200112000-00011.
Article
CAS
PubMed
Google Scholar
Roelants-Van Rijn AM, Van Der Grond J, De Vries LS, Groenendaal F: Value of 1H-MRS using different echo times in neonates with cerebral hypoxia-ischemia. Pediatr Res. 2001, 49: 356-362. 10.1203/00006450-200103000-00009.
Article
CAS
PubMed
Google Scholar
Shanmugalingam S, Thornton JS, Iwata O, Bainbridge A, O'Brien FE, Priest AN, Ordidge RJ, Cady EB, Wyatt JS, Robertson NJ: Comparative prognostic utilities of early quantitative magnetic resonance imaging spin-spin relaxometry and proton magnetic resonance spectroscopy in neonatal encephalopathy. Pediatrics. 2006, 118: 1467-1477. 10.1542/peds.2005-2976.
Article
PubMed
Google Scholar
Shu SK, Ashwal S, Holshouser BA, Nystrom G, Hinshaw DB: Prognostic value of 1H-MRS in perinatal CNS insults. Pediatr Neurol. 1997, 17: 309-318. 10.1016/S0887-8994(97)00140-9.
Article
CAS
PubMed
Google Scholar
Zarifi MK, Astrakas LG, Poussaint TY, Du Plessis A, Zurakowski D, Tzika AA: Prediction of adverse outcome with cerebral lactate level and apparent diffusion coefficient in infants with perinatal asphyxia. Radiology. 2002, 225: 859-870. 10.1148/radiol.2253011797.
Article
CAS
PubMed
Google Scholar
Whiting P, Rutjes AW, Reitsma JB, Bossuyt PM, Kleijnen J: The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol. 2003, 3: 25-10.1186/1471-2288-3-25.
Article
PubMed
PubMed Central
Google Scholar
Whiting PF, Weswood ME, Rutjes AW, Reitsma JB, Bossuyt PN, Kleijnen J: Evaluation of QUADAS, a tool for the quality assessment of diagnostic accuracy studies. BMC Med Res Methodol. 2006, 6: 9-10.1186/1471-2288-6-9.
Article
PubMed
PubMed Central
Google Scholar
Tam EW, Haeusslein LA, Bonifacio SL, Glass HC, Rogers EE, Jeremy RJ, Barkovich AJ, Ferriero DM: Hypoglycemia is associated with increased risk for brain injury and adverse neurodevelopmental outcome in neonates at risk for encephalopathy. J Pediatr. 2012, 161: 88-93. 10.1016/j.jpeds.2011.12.047.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klinger G, Beyene J, Shah P, Perlman M: Do hyperoxaemia and hypocapnia add to the risk of brain injury after intrapartum asphyxia?. Arch Dis Child Fetal Neonatal Ed. 2005, 90: F49-52. 10.1136/adc.2003.048785.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pappas A, Shankaran S, Laptook AR, Langer JC, Bara R, Ehrenkranz RA, Goldberg RN, Das A, Higgins RD, Tyson JE, Walsh MC: Hypocarbia and adverse outcome in neonatal hypoxic-ischemic encephalopathy. J Pediatr. 2011, 158: 752-758. 10.1016/j.jpeds.2010.10.019. e751
Article
PubMed
Google Scholar
Palisano R, Rosenbaum P, Walter S, Russell D, Wood E, Galuppi B: Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997, 39: 214-223.
Article
CAS
PubMed
Google Scholar
Barnett AL, Guzzetta A, Mercuri E, Henderson SE, Haataja L, Cowan F, Dubowitz L: Can the Griffiths scales predict neuromotor and perceptual-motor impairment in term infants with neonatal encephalopathy?. Arch Dis Child. 2004, 89: 637-643. 10.1136/adc.2002.019349.
Article
CAS
PubMed
PubMed Central
Google Scholar
GMFCS - Expanded and Revised (2007). [http://www.canchild.ca/en/measures/gmfcs_expanded_revised.asp]
Lal M, Tin W: International perspectives: measuring perinatal outcomes - why, when, and how: a British perspective. NeoReviews. 2012, 13: e515-e526. 10.1542/neo.13-9-e515.
Article
Google Scholar
Deeks JJ, Macaskill P, Irwig L: The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J Clin Epidemiol. 2005, 58: 882-893. 10.1016/j.jclinepi.2005.01.016.
Article
PubMed
Google Scholar
Abo-Zaid GMA: PhD thesis. Individual patient data meta-analysis of prognostic factor studies. 2011, University of Birmingham, School of Mathematics
Google Scholar
Code of Conduct for Medical Research.http://www.federa.org/sites/default/files/bijlagen/coreon/code_of_conduct_for_medical_research_1.pdf,
Stewart LA, Tierney JF: To IPD or not to IPD? Advantages and disadvantages of systematic reviews using individual patient data. Eval Health Prof. 2002, 25: 76-97. 10.1177/0163278702025001006.
Article
PubMed
Google Scholar
Riley RD, Lambert PC, Abo-Zaid G: Meta-analysis of individual participant data: rationale, conduct, and reporting. BMJ. 2010, 340: c221-10.1136/bmj.c221.
Article
PubMed
Google Scholar
Palisano RJ, Rosenbaum P, Bartlett D, Livingston MH: Content validity of the expanded and revised Gross Motor Function Classification System. Dev Med Child Neurol. 2008, 50: 744-750. 10.1111/j.1469-8749.2008.03089.x.
Article
PubMed
Google Scholar
Begg CB: Biases in the assessment of diagnostic tests. Stat Med. 1987, 6: 411-423. 10.1002/sim.4780060402.
Article
CAS
PubMed
Google Scholar
Anderson PJ, De Luca CR, Hutchinson E, Roberts G, Doyle LW: Underestimation of developmental delay by the new Bayley-III scale. Arch Pediatr Adolesc Med. 2010, 164: 352-356. 10.1001/archpediatrics.2010.20.
Article
PubMed
Google Scholar
Vohr BR, Stephens BE, Higgins RD, Bann CM, Hintz SR, Das A, Newman JE, Peralta-Carcelen M, Yolton K, Dusick AM, Evans PW, Goldstein RF, Ehrenkranz RA, Pappas A, Adams-Chapman I, Wilson-Costello DE, Bauer CR, Bodnar A, Heyne RJ, Vaucher YE, Dillard RG, Acarregui MJ, McGowan EC, Myers GJ, Fuller J, Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network: Are outcomes of extremely preterm infants improving? Impact of Bayley assessment on outcomes. J Pediatr. 2012, 161: 222-228. 10.1016/j.jpeds.2012.01.057. e223
Article
PubMed
PubMed Central
Google Scholar
Lowe JR, Erickson SJ, Schrader R, Duncan AF: Comparison of the Bayley II mental developmental index and the Bayley III cognitive scale: are we measuring the same thing?. Acta Paediatr. 2012, 101: e55-58. 10.1111/j.1651-2227.2011.02517.x.
Article
PubMed
Google Scholar
Ramsay M, Fitzhardinge PM: A comparative study of two developmental scales: the Bayley and the Griffiths. Early Hum Dev. 1977, 1: 151-157. 10.1016/0378-3782(77)90016-0.
Article
CAS
PubMed
Google Scholar
Sutcliffe AG, Soo A, Barnes J: Predictive value of developmental testing in the second year for cognitive development at five years of age. Pediatr Rep. 2010, 2: e15-
Article
PubMed
PubMed Central
Google Scholar