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Abstract

Background: Despite existing research on text mining and machine learning for title and abstract screening, the
role of machine learning within systematic literature reviews (SLRs) for health technology assessment (HTA) remains
unclear given lack of extensive testing and of guidance from HTA agencies. We sought to address two knowledge
gaps: to extend ML algorithms to provide a reason for exclusion—to align with current practices—and to
determine optimal parameter settings for feature-set generation and ML algorithms.

Methods: We used abstract and full-text selection data from five large SLRs (n = 3089 to 12,769 abstracts) across a
variety of disease areas. Each SLR was split into training and test sets. We developed a multi-step algorithm to
categorize each citation into the following categories: included; excluded for each PICOS criterion; or unclassified.
We used a bag-of-words approach for feature-set generation and compared machine learning algorithms using
support vector machines (SVMs), naïve Bayes (NB), and bagged classification and regression trees (CART) for
classification. We also compared alternative training set strategies: using full data versus downsampling (i.e.,
reducing excludes to balance includes/excludes because machine learning algorithms perform better with balanced
data), and using inclusion/exclusion decisions from abstract versus full-text screening. Performance comparisons
were in terms of specificity, sensitivity, accuracy, and matching the reason for exclusion.

Results: The best-fitting model (optimized sensitivity and specificity) was based on the SVM algorithm using
training data based on full-text decisions, downsampling, and excluding words occurring fewer than five times. The
sensitivity and specificity of this model ranged from 94 to 100%, and 54 to 89%, respectively, across the five SLRs.
On average, 75% of excluded citations were excluded with a reason and 83% of these citations matched the
reviewers’ original reason for exclusion. Sensitivity significantly improved when both downsampling and abstract
decisions were used.

Conclusions: ML algorithms can improve the efficiency of the SLR process and the proposed algorithms could
reduce the workload of a second reviewer by identifying exclusions with a relevant PICOS reason, thus aligning
with HTA guidance. Downsampling can be used to improve study selection, and improvements using full-text
exclusions have implications for a learn-as-you-go approach.
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Classification, Reasons for exclusion, Downsampling

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: mariam.besada@precisionvh.com
1Precision HEOR, 1505 West 2nd Ave #300, Vancouver, British Columbia
V6H3Y4, Canada
Full list of author information is available at the end of the article

Popoff et al. Systematic Reviews           (2020) 9:293 
https://doi.org/10.1186/s13643-020-01520-5

http://crossmark.crossref.org/dialog/?doi=10.1186/s13643-020-01520-5&domain=pdf
http://orcid.org/0000-0002-8757-7798
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:mariam.besada@precisionvh.com


Background
Systematic literature reviews (SLRs) are becoming more
demanding given the ever-growing number of publica-
tions and the increasing breadth of research questions.
In addition, health technology assessment (HTA) agen-
cies, such as the National Institute for Health and Care
Excellence (NICE), are expected to shorten the timeli-
ness of technology appraisals to expedite access to clin-
ically and cost-effective technologies [1]. Typically,
guidelines for SLRs recommend that study selection is
performed with a two-step process where potentially
relevant studies are identified by screening title and ab-
stracts followed by a review of the full-text reports of
the potentially relevant studies not excluded during ab-
stract screening. This process is typically conducted by
two independent reviewers and their results are collated
to reduce the amount of errors [2–4]. Reviewers need to
keep a clear record of reasons for excluding studies
based on eligibility criteria during full-text review, but it
is also recommended to do so during the abstract
screening phase [2–6]. For example, the Pharmaceutical
Benefits Advisory Committee (PBAC) does provide an
example PRISMA diagram that includes reasons for ex-
clusion both at abstract and full-text review levels. Pro-
viding the reason for exclusion for both abstract and
full-text screening helps the rigor of the review, facili-
tates assessing its quality, and can be valuable for up-
dates. The most common methodological criticism in an
SLR used for a technology appraisal submitted to NICE
has been identified as the lack of transparency in the
reviewer’s process for study selection [7]. However, re-
cording reasons for exclusion at both the abstract and
full-text review level is a time-consuming process.
Machine learning algorithms, a tool of artificial intelligence,

are computational procedures that, among other things, use
pattern recognition and inference by learning from previously
categorized documents to predict the category a new docu-
ment belongs to [8]. These algorithms are trained using ex-
ample data in order to learn the patterns required to conduct
the requisite classification. As these are quantitative proce-
dures, it is necessary to generate a feature-set to convert infor-
mation into an amenable format (i.e., from words to
numerical data). In the context of an SLR, the title and ab-
stract of a given study can be represented by a “bag-of-words,”
which stores the words but ignores the grammar and word
order while retaining the count of any repeated words. The
choice of data included in this step, as well as the approach
used to represent this information, may influence the classifi-
cation results during the subsequent application of machine
learning algorithms.
Machine learning algorithms have been suggested to

reduce the burden on researchers during the study selec-
tion process of an SLR by reducing the number of ab-
stracts that need to be screened or by replacing the need

for a second human screener [8–10]. O’Mara-Eves et al.
explored the evidence base related to the automation of
screening and identified 44 studies published between
2006 and 2014 [10]. They concluded that reducing the
number of citations needed to screen is the most common ap-
proach employed by developers (30 out of 44 papers), which
was achieved by removing the more obvious studies not meet-
ing the study selection criteria, yielding a workload reduction
of between 10 and 90%. Alternatively, six papers advocated for
the use of text mining to replace a second screener. In this ap-
proach, one reviewer screens all the records, while the ma-
chine acts as an independent “fact-check”. Additionally, seven
papers used automation to increase the speed of screening,
and 12 papers improved workflow through screening
prioritization. Bekhuis et al. found this approach reduced
workload for the second screener by 88% to 98% [11]. This
approach may be more accepted by HTA agencies, given that
one reviewer is retained for all citations, and a second reviewer
is used for any challenging citations not excluded by the algo-
rithm. The limited feasibility of dual screening has been recog-
nized by the Patient-Centered Outcomes Research Institute
(PCORI), who suggested that “fact-checking may be more suf-
ficient” [12].
Machine learning methods proposed for study selec-

tion in SLRs have some limitations that may be import-
ant to address in order to support HTA submissions,
which require a high level of transparency. Firstly, ma-
chine learning algorithms tend to be regarded as being
“black boxes.” For the purpose of study selection, it is
not sufficient to provide an include/exclude decision as
typically provided by machine learning algorithms; there
must be a reason for exclusion according to the PICOS
(population, intervention, comparator, outcomes, and
study design) framework [2, 4, 6]. Second, despite exist-
ing research on text mining and machine learning for
title and abstract screening, the best algorithm remains
unclear. Although the most commonly used algorithms
are support vector machines (SVMs) [8, 13], some litera-
ture suggests that alternative options, such as naïve
Bayes, may be more favorable [9]. Third, with respect to
optimizing algorithms, a key critique of existing machine
learning applications to study selection is that it seems
parameter settings often rely on default settings; in other
words, authors may not have systematically evaluated
feature generation and classification algorithms in order
to determine the impact and validity of such tools [13].
Our objective was to develop an algorithm for SLR ab-

stract screening that excludes abstracts according to the
specific reasons defined according to the PICOS frame-
work. In doing so, we also compared factors pertaining
to data preparation, training set settings, feature-set se-
lection, and classification algorithm, in order to optimize
study selection by maximizing sensitivity, followed by
specificity.
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Methods
We used data from existing SLRs (further described
below) to derive both training and test sets with which
to apply machine learning algorithms for study selection
at the abstract screening phase. We conducted simula-
tions across a large variety of scenarios as summarized
in Table 1 in order to gain insight into how a set of
choices pertaining to the feature-set generation, and
classification algorithms could be used to optimize iden-
tification of citations to exclude. Finally, the simulations
were conducted using an overall process that allowed to
keep track of reasons for exclusion. The full details are
provided below.

Data and construction of training and test sets
Given that we opted to use data from previously con-
ducted SLRs to both construct training and test sets, the
training set can be seen as being analogous to conduct-
ing an update of a previously performed SLR. The five
datasets we used were from large existing SLRs that var-
ied in disease areas: psoriasis (n = 4442), lung cancer (n
= 12,769), liver cancer (n = 8507), melanoma (n = 3089),
and obesity (n = 5187). Each of the SLRs was guided by
pre-defined eligibility criteria, and screening decisions
were verified through the involvement of two independ-
ent researchers in the study selection process. A brief
summary of the SLRs is provided in Table 2. Data for
each reference consisted of an abstract, a decision (in-
clude/exclude), and a reason for exclusion where applic-
able (every excluded abstract did contain a reason for
exclusion). With respect to decisions and reasons for ex-
clusion, three different approaches were considered: (1)
abstract screening (i.e., all decisions based on abstract
screening only); (2) full-text screening (i.e., references
excluded at full-text were identified as excludes for the

specified reason); (3) abstract screening for excludes and
full-text screening for includes (modified full-text; i.e.,
removing references included at abstract-level but ex-
cluded at full-text screening). Full-text decisions are
more informative and would be used if available. The
motivation for approach #3 is to assess how much is lost
when using abstract decisions to better understand its
impact on learn-as-you-go algorithms.
All of the SLRs used were conducted in dual and all

values used in the datasets were those agreed upon after
reconciliation. Duplicated publications were identified
and removed prior to proceeding. These data were split
into training and test sets (75% training/25% test) via
partitioned random sampling (include/exclude decision)
with a constant random seed. This 75/25% split is for
the purpose of these experiments to mimic an SLR up-
date scenario and does not represent real-world practice.
All parameter settings, chosen algorithms, and other
model settings were defined a priori and were not influ-
enced by examining the results on the test set.

Feature generation
Feature generation refers to selecting the most relevant
properties of the data such that these features provide
the most value in the predictive model. In this context,
we are attempting to find words or phrases (features) in
an abstract that allow us to differentiate between the ab-
stract being included or excluded as well as the reason
for exclusion.
Feature generation was completed using a text mining

bag-of-words approach. First, common English words,
numbers, and punctuation were removed from all cita-
tions. Next, a word frequency matrix was created, and
from this, a document-term matrix was formed. The fre-
quency matrix counts the frequency of words within

Table 1 Datasets and model parameters considered across 870 simulations

Datasets (size) Data scenarios Downsampling Word frequencies Classification
algorithms

Model
metricsb

Psoriasis (4442) Abstract screening With Removing words appearing < 5 times across all
citations

SVM ROC

Lung cancer (12,
769)

Full-text screening Without Removing words appearing < 10 times across all
citations

Naïve Bayes Sensitivity

Liver cancer
(8507)

Removing full-text
excludes

Removing words appearing < 100 times across
all citations

Bagged CART

Melanoma
(3089)

Removing words appearing < 500 times across
all citations

Obesity (5187) Keeping top 50 words in terms of variable
importancea

Keeping top 100 words in terms of variable
importancea

Keeping top 500 words in terms of variable
importancea

aNot applicable to the SVM algorithm
bNot applicable to the bagged CART algorithm
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each document and the document-term matrix describes
where words appear across the documents (here, citation
abstracts). The latter has rows corresponding to each of
the citations and columns corresponding to each term
[14]. Additionally, we compared results when including
or excluding rare occurring words. Rare words were de-
fined as those appearing less than 5, 10, 100, or 500
times across the abstract text from all citations com-
bined. Finally, zero-variance predictors (i.e., predictors
with only one level that appear exclusively in either the
training or test set) were removed from both the training
and test set as these are useful to the model but can cre-
ate numeric instability.

Classification algorithms
A classification algorithm is a technique used to weigh
the features of a dataset to create the optimal split of
that data into two or more classes. In this context, we
are classifying abstracts as being included or excluded
(with a reason for exclusion).
Three machine learning classification algorithms were

fit using each training set: (1) SVM; (2) naïve Bayes; (3)
bagged CART. Each algorithm has its own set of tuning
parameters, which rather than relying on the default set-
tings of the tuning parameters, we considered varying
values of the tuning parameters for each algorithm to
ensure that differences between the algorithms were not
biased by them. For SVM, the tuning parameter was cost
(set to 0.25, 1, 2, 8, 32, 256). The cost describes the de-
gree to which data points are penalized when they fall
too close to the region separating the possible classifica-
tion outcomes. The larger the cost, the more flexible the
region is, where low costs lead to a smooth region of
separation. A cost that is too high can lead to an ex-
tremely “bendy” region of separation, which in some
cases may lead to overfitting. For the naïve Bayes model,
the distribution type parameter was set to kernel or no
kernel and the Laplace correction was set to 0, 0.5, or 1.

Distribution type refers to whether or not a parametric
normal distribution or a non-parametric distribution is
used. Laplace correction refers to adjusting probabilities
of rare occurring features (i.e., a probability equal to
zero) to give them a small chance of occurring in order
to avoid prediction probabilities of zero (given the multi-
plicative nature of the naïve Bayes model) [15].
When training these algorithms, we tested the effects

of downsampling (also referred to as under sampling),
which is the term used to describe the process of class
balancing. This involves randomly removing a number
of excludes (the larger class) from the data until the
number of includes and excludes in the training set are
equivalent. Within SLRs, it is often the case that there
are many more excluded citations compared to included
publications. This can cause major class imbalances
when fitting classification algorithms to these data. Class
imbalances can create complications in terms of training
the algorithm, since many models will tend to overfit to
the majority class which will have a negative impact on
model performance [16]. In an attempt to rectify this,
we reduced the number of excludes when conducting
feature generation in order to balance the over-
represented class (excludes) with the under-represented
class (includes). Downsampling has been shown to work
well in the literature with respect to increasing the sensi-
tivity of the classifier in the under-represented class [17–
19]. As a result, our approach also employed downsam-
pling on a 1:1 basis and involved random sampling from
the excludes to match the sample size of the includes.
An additional consideration that was required for

working with the classification algorithms, was the
choice of threshold to categorize a given citation as an
include or exclude. The output provided by each algo-
rithm is a probability of the citation being an include or
exclude. As this was not the primary concern of this
study, preliminary tests were used to identify a thresh-
old. A threshold of 90% probability of exclusion was

Table 2 Summary of systematic literature reviews included

Datasets Selection criteria Abstract screening Full-text screening

Population Study design Abstracts
screened, n

Abstracts
included, n (%)

Full-texts included,
n (%)^

Psoriasis Adults patients with moderate to severe
psoriasis

RCTs and observational
studies

4442 613 (13.8) 171 (27.9)

Lung
cancer

Adult patients with advanced or metastatic
lung cancer

RCTs 12,769 215 (1.7) 66 (30.7)

Liver
cancer

Adult patients with unresectable liver
cancer

RCTs and observational
studies

8507 1141 (13.4) 294 (25.8)

Melanoma Adult patients with unresectable stage III
or IV melanoma

RCTs 3089 124 (4.0) 41 (33.1)

Obesity Adult patients with BMI ≥ 25 kg/m2 RCTs with trial duration ≥
12months

5187 228 (4.4) 47 (20.6)

Abbreviations: RCTs, randomized controlled trials
^Percentage of included abstracts selected for full-text screening
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chosen because it maximized a model’s receiver operat-
ing characteristic (ROC) curve (closest point to the
upper left corner).
Note that the tuning parameters were used in each

model iteration and were not looped over separately.
Moreover, both the ROC and sensitivity were used as per-
formance metrics for these tuning parameters. Finally, in
addition to using word frequency for feature-set gener-
ation, the above algorithms were fit using the top 50, 100,
and 500 words based on variable importance using criteria
specific to each individual algorithm (not applicable to
SVM algorithm).

Process for exclusion classification
Figure 1 displays the overall process we developed for
abstract screening classification. With this process, a col-
lection of abstracts can be classified as excluded with a
reason or undecided (to be reviewed by a human). The
machine learning algorithms were first fit on overall in-
clude/exclude decision and then subsequently fit pair-
wise on include/specific exclusion reason (population,
intervention, outcomes, study design, other, and time).
Ten-fold cross-validation (CV) was performed on each
model run. As tuning parameters and metrics differed
between models, the CV-folds were randomized for each
model. All these models were then used to predict the
outcome of the test set citations and produced a result
of either an include, exclude with reason, or unknown
(left for human to screen). Exclusion reasons were se-
lected from one of the following: study design, popula-
tion, intervention, comparator, outcomes, other (i.e.,
study protocols, conference abstracts, language), time.
When multiple reasons were applicable to a given cit-
ation, the exclusion reason was chosen based on a hier-
archy in the order of the aforementioned reasons.

Statistical analyses
The statistical analyses consisted of conducting simulations
across the various scenarios to be compared. Table 1 high-
lights all datasets and model parameters considered.
Altogether 870 scenarios were considered (420—naïve
Bayes, 240—SVM, and 210—bagged CART). Model per-
formance was assessed using sensitivity, specificity, run
time, and percentage of correct exclusion reasons. In this
context, we defined sensitivity as TP/(TP + FN), where TP
(true positive) is a true included citation identified as an in-
clude or no decision and FN (false negative) is a true in-
cluded citation identified as an exclude with a reason for
exclusion. Specificity was defined as TN/(TN + FP), where
TN (true negative) is a true excluded citation identified as
an exclude with a reason for exclusion, and FP (false posi-
tive) is a true excluded citation identified as an include or
identified as having no decision. These calculations were
performed relative to the full-text decisions (i.e., if a citation
was ultimately included or excluded in the final set of SLR
citations).
Sensitivity and specificity were compared using a

paired t-test in which each factor tested was held con-
stant one at a time, while varying all other model char-
acteristics (e.g., downsampling and performance metric).
When selecting the best fitting model, we prioritized
sensitivity given it is important not to incorrectly ex-
clude any citations to be conservative in an SLR. If the
opposite happens and a citation meant to be excluded is
accidentally classified as an include, this causes minimal
extra work and will likely be picked up by the human re-
viewer. After maximizing sensitivity, specificity was max-
imized as a secondary measurement. Exclusion reason
percentage, exclusion reason matching percentage, and
model run time were not considered heavily during the
model selection process.

Fig. 1 Complete study selection process to identify studies to exclude with reasons, including algorithm training and parameter setting
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All simulations, as outlined in Table 1, were conducted
in R (v3.4.4). Text mining and machine learning algo-
rithms were obtained through the caret (v6.0-80) pack-
age via the following sub packages: klaR (v0.6-14), ipred
(v0.9-6), and e1071 (v1.7-0). The R code is available in
Additional file 1.

Results
Overall, the best fitting algorithm and settings based on
the model selection criteria was the SVM algorithm with
the data set built using inclusion/exclusion decisions
from the SLR’s full-text screening; feature-set generation
using downsampling of exclusions; the removal of words
occurring fewer than 5 times; and selecting an optimal
cost using the ROC metric (note that no definitive cost
was preferred over others between the five datasets). Sta-
tistics related to this combination of algorithm and set-
tings can be found in Fig. 2 (labeled as “Full-text
decisions”). The SVM algorithm using these settings had

a sensitivity of 100% in all but two of the datasets and
had an average sensitivity of 99% (range, 94 to 100%)
and an average specificity of 74% (range, 54 to 89%)
across the datasets. True included citations at full-text
that were misclassified as excludes in the testing sets
across datasets were as follows: psoriasis (2/33); lung
cancer (0/17); liver cancer (1/76); melanoma (0/10);
obesity (0/11). Table 3 presents the performance statis-
tics across each dataset (means and standard deviations).
Of the citations that were identified as excluded in the
first stage of categorization, on average 75% (range: 53%
to 90%) were excluded with a reason. In the second stage
of categorization, the model correctly identified the re-
viewers’ original reason for exclusion, on average 83%
(range, 73 to 91%) of the time.

Data generation
The inclusion/exclusion decisions used to create the
training set impacted results and consequently slightly
changed the choice of optimal algorithm. Specifically, if

Fig. 2 Comparing best fitting full-text decisions (SVM, frequency 5, ROC, downsampling) and abstract decision (SVM, frequency 5, sensitivity,
downsampling) algorithm and settings
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inclusion/exclusion were based on decisions from the
SLR’s abstract screening only (e.g., suppose full-text de-
cisions were not available), the best machine learning al-
gorithm was again the SVM algorithm. Statistics related
to this model can be found in Fig. 2 (labeled as “Abstract
decisions”). Note that downsampling and removal of
words occurring fewer than 5 times continued to be op-
timal, while selecting an optimal cost parameter for the
SVM algorithm now used a sensitivity metric rather than
a ROC metric. Comparisons of model performance in
terms of sensitivity and specificity across all competing
metrics are summarized in Fig. 3.
Averaged across all combinations, sensitivity was

higher using abstract decisions than full-text decisions

and modified full-text decisions. This makes sense given
that abstract decisions are more inclusive and therefore
will lead to more includes and less false negatives. In
contrast, both full-text and modified full-text decisions
led to higher specificity. Of note, modified full-text deci-
sions improved both specificity and sensitivity relative to
full-text decisions. All of the listed comparisons were
statistically significant.

Feature generation
Table 4 presents the performance statistics across each of
the factors of interest. With respect to feature generation,
on the basis of word frequency, keeping words that ap-
peared at least 500 times performed much worse at lower

Table 3 Model results for each dataset while varying all model characteristics

Datasets Sensitivity
mean (SD)

Specificity
mean (SD)

Precision
mean (SD)

Accuracy
mean (SD)

Correct reason for exclusiona

mean (SD)

Psoriasis 84.97% (14.99%) 75.72% (15.84%) 19.82% (9.55%) 76.17% (14.63%) 88.66% (7.76%)

Lung cancer 77.01% (21.36%) 90.98% (9.05%) 10.94% (7.19%) 90.87% (8.88%) 93.78% (5.89%)

Liver cancer 84.23% (12.81%) 67.66% (18.69%) 19.38% (8.65%) 68.73% (16.87%) 82.58% (7.60%)

Melanoma 88.05% (22.11%) 87.05% (17.09%) 27.60% (21.71%) 87.07% (16.67%) 89.31% (7.84%)

Obesity 78.45% (23.95%) 84.80% (15.10%) 13.25% (10.25%) 84.71% (14.68%) 82.18% (16.02%)

Sensitivity = TP/(TP + FN), specificity = TN/(TN + FP), precision = TP/(TP + FP), and accuracy = (TP + TN)/(TP + FP + FN + TN); where TP (true positive) is a true
included citation identified as an include or no decision, FN (false negative) is a true included citation identified as an exclude with a reason for exclusion, TN
(true negative) is a true excluded citation identified as an exclude with a reason for exclusion, and FP (false positive) is a true excluded citation identified as an
include or identified as having no decision
aCorrect reason for exclusion was defined as the number of citations whose true reason for exclusion fell above the 90% threshold over the total number of
citations with any reason for exclusion. Sensitivity, specificity, precision, and accuracy were calculated by holding each factor constant while averaging over all
other model characteristics (e.g., downsampling and performance metric)
Abbreviations: SD, standard deviation

Fig. 3 Comparative model results across all tested model characteristics
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thresholds, especially with respect to specificity. The
thresholds did influence run times, but this carried
very little weight in determining the best choice.
Using words with a frequency of 10 or more words
to build the feature-set led to the best specificity,
while using words with a frequency of 5 or more
words led to the best sensitivity.
There were no significant differences in either sensitiv-

ity or specificity when comparing models using the top
50, 100, and 500 words in terms of variable importance
(Table 4, Fig. 3). This indicates that the classification al-
gorithms are likely already removing the “noise” from
their predictions, and sub-setting variables does not have
much of an effect on model performance.
Downsampling played one of the most significant roles

when examining model performance. As seen in Figs. 3
and 4, and Table 4, when downsampling was applied,

this lead to a 14% higher sensitivity on average, while
sacrificing −12% specificity and leading to decreased
model run time. As we are most concerned with sensi-
tivity and overall efficiency, incorporating downsampling
was favored.

Classification algorithm and performance metrics
Figures 3 and 5 illustrate the sensitivity and specificity
across the model variations. Both CART and SVM had
higher sensitivity than NB; however, these results were
not statistically significant. With regards to specificity,
NB was significantly better than both SVM and CART,
while SVM was also significantly better than CART.
Using sensitivity opposed to ROC as a performance
metric ironically resulted in a significantly lower sensi-
tivity and significantly higher specificity when compared
with ROC.

Table 4 Model results for each factor while varying all other model characteristics

Sensitivity
mean (SD)

Specificity
mean (SD)

Precision
mean (SD)

Accuracy
mean (SD)

Correct reason for exclusiona

mean (SD)

Citation decisions

Abstract decisions 89.76% (10.74%) 70.50% (15.48%) 11.20% (4.53%) 71.43% (14.65%) 84.77% (6.12%)

Full-text decisions 76.49% (15.74%) 83.07% (13.02%) 20.11% (9.49%) 83.04% (12.27%) 85.63% (8.97%)

Modified full-text 81.37% (13.18%) 84.86% (12.07%) 24.23% (11.05%) 84.90% (11.42%) 87.52% (9.45%)

Classification algorithms

CART 83.63% (16.56%) 70.35% (15.20%) 14.92% (7.91%) 71.00% (14.04%) 78.64% (7.72%)

NB 79.17% (11.41%) 88.45% (6.85%) 22.59% (10.14%) 88.30% (6.42%) 91.38% (4.41%)

SVM 87.20% (15.26%) 74.05% (16.39%) 15.43% (10.62%) 74.78% (15.67%) 84.76% (7.54%)

Feature generation

Frequency = 5 85.67% (15.31%) 81.94% (13.09%) 20.07% (11.47%) 82.21% (12.23%) 87.40% (7.25%)

Frequency = 10 85.54% (14.29%) 82.13% (13.27%) 20.70% (12.26%) 82.39% (12.46%) 87.23% (7.29%)

Frequency = 100 83.52% (11.73%) 80.49% (13.38%) 18.19% (10.08%) 80.83% (12.59%) 86.82% (8.25%)

Frequency = 500 78.81% (19.22%) 67.38% (17.50%) 10.93% (6.62%) 68.20% (16.68%) 80.31% (6.91%)

Importance = 50 82.19% (9.54%) 85.44% (8.91%) 19.08% (7.17%) 85.51% (8.29%) 89.49% (6.29%)

Importance = 100 83.59% (9.19%) 85.10% (10.75%) 20.49% (8.27%) 85.22% (10.06%) 89.46% (7.47%)

Importance = 500 82.60% (10.75%) 84.73% (13.78%) 23.82% (11.18%) 84.84% (12.94%) 89.95% (7.45%)

Performance metrics

ROC 83.90% (13.67%) 77.09% (15.32%) 17.09% (8.81%) 77.52% (14.44%) 84.02% (8.73%)

Sensitivity 80.07% (15.43%) 83.81% (13.34%) 21.10% (12.27%) 83.90% (12.59%) 89.53% (6.23%)

Downsampling

Without downsampling 75.46% (15.87%) 85.55% (11.24%) 23.27% (10.93%) 85.45% (10.43%) 88.93% (5.90%)

With downsampling 89.62% (7.97%) 73.40% (15.79%) 13.76% (7.00%) 74.12% (15.06%) 83.01% (9.35%)

Sensitivity = TP/(TP + FN), specificity = TN/(TN + FP), precision = TP/(TP + FP), and accuracy = (TP + TN)/(TP + FP + FN + TN); where TP (true positive) is a true
included citation identified as an include or no decision, FN (false negative) is a true included citation identified as an exclude with a reason for exclusion, TN
(true negative) is a true excluded citation identified as an exclude with a reason for exclusion, and FP (false positive) is a true excluded citation identified as an
include or identified as having no decision
aCorrect reason for exclusion was defined as the number of citations whose true reason for exclusion fell above the 90% threshold over the total number of
citations with any reason for exclusion. Sensitivity, specificity, precision, and accuracy were calculated by holding each factor constant while averaging over all
other model characteristics (e.g., downsampling and performance metric)
Abbreviations: SD, standard deviation
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Overall process and time savings
The run times, using abstract decisions, ranged between
4.5 to 13.2 min for each dataset. The run times were fas-
ter using full-text decisions (3.0 to 6.8 min). Collectively,
our entire dataset of 33,994 abstracts took a total of 31
min using abstract decisions. An SLR with 5000 ab-
stracts can take an experienced reviewer between 60 to
85 h to complete abstract screening (approximately 500-

800 abstracts per working day, which we assume to be 8
h) [8, 10], compared with 5min for the algorithm. In
any scenario, our process will take minutes to save hours
of work.

Discussion
Our study demonstrated a process that can be used to
identify studies to exclude from an evidence base using

Fig. 4 Sensitivity and specificity of model variations showcasing differences in classification algorithms and sampling

Fig. 5 Sensitivity and specificity of model variations showcasing differences in classification algorithms and data decisions
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machine learning and with the requisite transparency,
namely, with a reason for exclusion. Moreover, our ana-
lyses provided new insights to optimize the process with
the aim of maximizing sensitivity (i.e., to avoid falsely
excluding citations that should be included). Taken to-
gether, text mining and machine learning can greatly in-
crease the efficiency of the SLR process and could save
many hours of manual effort. While choice of machine
learning algorithm settings did influence results, data
construction and feature generation had a greater im-
pact. Among these, downsampling resulted in signifi-
cantly improved sensitivity and run time (while
sacrificing specificity), and the removal of excludes iden-
tified through full-text screening (modified full-text) re-
sulted in significantly improved sensitivity, specificity,
and reduced run times when compared to full-text deci-
sions alone.
Despite existing research, uptake of machine learning

algorithms to assist with SLRs remains low. One contrib-
uting factor may be that machine learning may be per-
ceived as being “black-box”. In other words, it may be
difficult to understand which inputs contribute to the
classification of a given citation. This was a major point
of contention during a panel discussion on the use of
artificial intelligence within health economics and out-
comes research at the ISPOR conference [20]. The
methods evaluated in this paper increase the transpar-
ency of machine learning in the context of SLRs by pro-
viding a reason for exclusion which is aligned with the
eligibility criteria described in the PICOS framework.
Not only is this a standard in SLR procedures, but it is
also a requirement for HTAs as it contributes to the
transparency of the selection process within an SLR.
Given that not all citations can be excluded with a rea-

son to guarantee a 100% sensitivity, we propose that the
use of machine learning in combination with human
screeners. One screener to screen all abstracts as would
usually be done and the other to review the remaining
abstracts that cannot be classified by the algorithm—a
sort of cyborg reviewer. Another practical consideration
relates to what scenarios this can be used for. For sake
of simplicity, we focused on an SLR update, which repre-
sents the easiest scenario under which to construct a
training set. Nonetheless, the algorithm is independent
from the manner in which the training set is obtained
and therefore could be used in other scenarios as well.
Our study did not focus on the challenge of constructing
a training set. As the cut point for an SLR is arbitrary,
additional research is needed to quantify what consti-
tutes a sufficient training set.
Finally, care should be taken in applying this algorithm

to more complex situations. We found success using the
algorithms to select RCT and observational designs, as
well as to adult populations with a specific disease.

However, further testing will be needed for more specific
situations (e.g., patients with a specific line of treatment
in oncology). For example, in the obesity data set, we re-
categorized the trials excluded for short follow-up as ex-
clusion for other reasons as it initially was leading to
poor results.
In addition to allowing exclusions with reasons, three

other key findings within our study are as follows: (1)
the 10% decrease in specificity when using abstract-level
decisions (with equivalent sensitivity) when using the
best fitting models (Fig. 2); (2) the benefits of modified
full-text decisions when compared to full-text decisions
alone; and (3) the benefits of using downsampling. The
improved specificity from using includes defined during
full-text screening has implications for the “learn-as-
you-go” approach that has been suggested by many,
given that such a method is limited to abstract screening
decisions only [10, 21]. Naturally, full-text screening deci-
sions have the luxury of disaggregating true includes from
those that reviewers have simply pushed forward from ab-
stract to full-text screening for further investigation. None-
theless, our study provides further insights into how much of
a difference this makes. Specifically, among combinations
leading to high sensitivity, using abstract-level decisions leads
to approximately 10% lower specificity. Moreover, our hy-
pothesis regarding the use of modified full-text decisions did
prove to be correct. Namely, by removing exclusions from
citations where the decision was almost surely made outside
of the abstract (i.e., data and construction of training and test
sets option #3; modified full-text), the algorithms improved
with respect to using full-text for decision-making. This form
of data generation improved both sensitivity and specificity.
The improved sensitivity and run time resulting from

downsampling were somewhat counter-intuitive because
in most contexts adding more data is helpful (e.g., more
data leads to better estimates). In the context of machine
learning, it is well known that these algorithms work
best when the classes are well balanced [10]. As our
study showed, in this context balance trumps sample
size because reducing data led to improved analytical
outcomes. Downsampling had an important impact on
all three classification algorithms that we tested, but the
impact was strongest in the SVM algorithm.
Our research complements research conducted by

others. Garcia et al. tested various machine learning al-
gorithms, such as SVM, NB, k-Nearest neighbors, and
Rocchio, based on different parts of the articles (title, ab-
stract, or both) [8]. Similar to our results, Garcia and
colleagues concluded that SVM is superior to the other
classifiers. The authors also identified that using only
article titles provided comparable results to those when
adding article abstracts. Frunza and colleagues used
naïve Bayes and tested three feature selection methods
(Chi2, InfoGain, and Bi-Normal Separation) and three
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representation techniques (bag-of-words, unified medical
language system, and a combination of both). Using bag-
of-words, Frunza et al. reported a sensitivity of 65.3%
[9]. Our study suggested that NB resulted in a sensitivity
of 79.17%.
There are some limitations to this study. Three classi-

fication algorithms were selected in this study based on
the current literature; however, there are a multitude of
other algorithms that have yet to be explored and tested.
Similarly, with respect to feature generation, our study
focused on a few factors, but there are many others that
could also be explored. Focus on these particular factors
was simply a result of conducting a feasibly sized study.
The training sets were designed to mimic an SLR update
and this may seem like a very narrow area of application;
however, lessons learned through our study are not re-
stricted by the manner in which our training sets were
obtained and can be generalized to other applications.
On the other hand, the training sets were quite large and
it is unclear how smaller training sets would compare in
terms of the measurements we used (e.g., specificity). A
limitation to the factors identified as the preferred strategy
may also be limited with respect to very large datasets, as
the memory and run time required may be significantly
impacted. Observed run times with models set to the most
computational intensive settings varied from about 16min
for the smallest dataset, to 52min in the largest dataset.
Although this can be addressed using downsampling,
other algorithms and techniques may be worth exploring
to identify opportunities to increase efficiency.
In conclusion, in order to align with HTA require-

ments, machine learning algorithms for SLRs focused on
study exclusions that should be accompanied with a
PICOS reason. There are important steps in data prepar-
ation and feature-set generation that can have a very
meaningful impact on study selection results. Most not-
ably downsampling and using includes from the full-text
stage can both improve sensitivity and specificity.
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