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Abstract

Background: Converging evidence demonstrates the important role of the neuropeptide hormone oxytocin (OT) in
human behaviour and cognition. Intranasal OT administration has been shown to improve several aspects of social
communication, such as the theory of mind performance and gaze to the eye region, and reduce anxiety and related
negative cognitive appraisals. While this early research has demonstrated the potential for intranasal OT to treat
psychiatric illnesses characterized by social impairments, the neurobiological mechanisms are not well known.
Researchers have used functional magnetic resonance imaging (fMRI) to examine the neural correlates of OT response;
however, results have been variable and moderating factors are poorly understood. The aim of this meta-analysis is to
synthesize data examining the impact of intranasal OT administration on neural activity.

Methods/design: Studies that report fMRI data after intranasal OT administration will be identified. PubMed, Embase,
PsycINFO, and Google Scholar databases will be searched as well as the citation lists of retrieved articles. Eligible articles
written in English from 2005 onwards will be included in the meta-analysis, and corresponding authors of these papers
will be invited to contribute t-maps. Data will be collected from eligible studies for synthesis using Seed-based d
Mapping (SDM) or Multi-Level Kernel Density Analysis (MKDA), depending on the number of usable t-maps received.
Additionally, publication bias and risk of bias will be assessed.

Discussion: This systematic review and meta-analysis will be the first pre-registered synthesis of data to identify the
neural correlates of OT nasal spray response. The identification of brain regions underlying OT’s observed effects will
help guide future research and better identify treatment targets.

Systematic review registration: PROSPERO CRD42016038781
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Background
The neuropeptide oxytocin (OT) has attracted signifi-
cant scientific and lay interest for its role in social cogni-
tion and behaviour [1, 2]. For example, a single
administration of OT has been shown to modulate the
perception of social cues [3], motivate in-group cooper-
ation [4], increase gaze to the eye region of faces [5], and
reduce anxiety [6, 7]. Due to these reported cognitive
and behavioural effects, researchers have begun investi-
gating OT’s potential to treat psychiatric conditions,
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such as autism spectrum disorders, schizophrenia, and
social anxiety disorder in a number of clinical trials (for
a review, see [8]).
Although the modulatory effects of OT on social

behaviour and cognition have been demonstrated re-
peatedly [8, 9], the mechanisms are poorly understood
[10, 11]. To better elucidate these behavioural and
cognitive effects, researchers have investigated the
neural correlates of OT’s effects using brain-imaging
tools such as functional magnetic resonance imaging
(fMRI). Converging evidence from this field suggests
the amygdala—a key brain region involved in the pro-
cessing of emotional [12] and social stimuli [13]—is
an important target of OT administration [14–18].
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Although the amygdala has received significant re-
search interest, other areas of the brain have also im-
plicated in OT’s response [19].
Interest in the use of fMRI to understand the effects of

OT has been increasing exponentially in the past decade
(Fig. 1), with a total of 115 publications using the key-
words “oxytocin” and “fMRI” published between 2004
and 2014 (although only a minority of these publications
specifically assess the impact of OT administration on
fMRI outcomes). Early work primarily investigated
neural activity during emotional task processing after
OT administration [14, 16, 20]; however, recent research
has begun to investigate resting state activity and con-
nectivity [21, 22]. Research is yet to synthesize studies
that explore resting state neural activity, which is im-
portant for understanding neural modulation with OT
regardless of task, particularly within the context of het-
erogeneity in task design. Meta-analysis provides a ro-
bust statistical method of synthesizing effect sizes across
studies and is a valuable tool for clarifying past findings.
Various methods are available for the meta-analysis of

brain-imaging data [23]. Prior research synthesizing OT
fMRI data has adopted a meta-analytic approach using
effect size signed differential mapping [24]. This ap-
proach uses extracted fMRI peak coordinates to create
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Fig. 1 Increasing interest in fMRI and oxytocin. PubMed metadata was coll
“oxytocin” published between 2004 and 2014. A loess smoothed fit curve w
was collected using the “RISmed” R package
an estimated map of all possible brain region coordi-
nates, which are then synthesized. However, this ap-
proach can bias effects of interest estimates where
individual studies have reported a relatively high number
of peaks when compared to others by chance. Addition-
ally, it is difficult to analyse and interpret the impact of
key study design characteristics such as dose and sex
using this approach, unless a large number of studies are
available. The impact of these problems on effect size-
based meta-analysis results is difficult to determine
within the existing limitations of the literature; therefore,
meta-analysis methods that produce interpretable
consistency measures are likely to provide guidance for
future experimental investigation in this area. Given this
is the ultimate goal, the Multi-Level Kernel Density Ana-
lysis (MKDA) coordinate-based approach is suitable [25]
in that it provides clear interpretability and is unbiased
by number of within-study peaks (see more details below).
However, an updated version of effect size signed differen-
tial mapping—Seed-based d Mapping (SDM)—has been
released [26], which can combine reported coordinates
and t-maps, which are statistical parametric maps display-
ing the t statistic after estimation of the experimental pa-
rameters of interest for a given study. The t statistic is
estimated at each voxel—the small volumetric unit of the
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statistical parametric map (e.g. 2 mm3)—for the whole
brain, which in the context of performing a meta-analysis
allows estimation of effect sizes at each voxel. By increas-
ing the number of t-maps entered into the analysis, this
approach has increasing sensitivity while reducing false
positives [26]. The use of t-maps is preferable, as the inclu-
sion of studies with reported coordinates requires the stat-
istical estimation of unreported voxels. However, this
approach relies on the availability of t-maps (e.g. as supple-
mentary material or by direct researcher request). There-
fore, if studies have a significant number of usable t-maps
available (i.e. which will significantly increase sensitivity
and decrease false positives), we will employ SDM in the
first instance. Once data is extracted from eligible studies,
maps of d values [27] and their variances are then created
for meta-analysis (see below for further synthesis details).

Methods/design
Aims
The aim of the present study is to examine the effects of
OT administration on human brain activity by synthesiz-
ing data from available research studies. This protocol is
registered with PROSPERO (CRD42016038781) and has
been reported here according to PRISMA-P [28] guide-
lines (see Additional file 1). Pre-registration of the ana-
lysis protocol will also help avoid potential bias by
providing documentation of a priori analysis plans [29].
If protocol amendments are required, the PROSPERO
registration will be updated.

Inclusion and exclusion criteria
In this meta-analysis, we will include studies that meet
the following criteria: (a) The study measured blood oxy-
genation level-dependent response using fMRI to assess
response after OT administration; (b) the study provides
standard Talairach or Montreal Neurological Institute
(MNI) coordinates, allowing for comparison of findings;
(c) the study includes a placebo comparison group; and
(d) the study was written in English. A range of study
designs (e.g. crossover, between-subjects) will be consid-
ered for inclusion as well as articles from the grey litera-
ture (e.g. pre-prints). Study authors will be contacted if
any information germane to study inclusion is unclear.

Search strategy
We will conduct a systematic literature search to collect
studies that explore the neural effects of OT administra-
tion. Searches will be performed in PubMed, Embase,
PsycINFO, and Google Scholar with the following com-
bination of terms which were developed in consultation
from two academic libraries: (“oxytocin” OR “syntoci-
non”) AND (“fMRI” OR “brain imaging” OR “functional
magnetic resonance imaging” OR “MRI” OR “magnetic
resonance imaging”). The search will be limited to
articles published from 2005 (first fMRI OT study; 20)
onwards. In a second iteration, reference lists within
studies will be examined for remaining studies that in-
clude the critical measures.

Data extraction and management
Two independent reviewers will independently scan pri-
mary titles to select articles for further scrutiny, deleting
any duplicate titles. Abstracts of potentially eligible stud-
ies will then be read to determine eligibility for coding
into a spreadsheet. When the title and abstract cannot
be rejected, the full text of the article is obtained and
reviewed for inclusion using a coding form. Any dis-
agreements will be adjudicated by a third reviewer. If
both reviewers agree that the trial does not meet eligibil-
ity criteria, it will be excluded. The two reviewers will
then extract data from all eligible studies using a data
extraction form. The coding forms will be developed
specifically for this study, based on a pilot review, extrac-
tion, and calibration of five randomly included studies.
Any disagreements regarding data extraction will be
solved via discussion with a third reviewer. Data from
studies initially selected based on title and abstract and
articles included in the review will be documented. Rea-
sons for the exclusion of retrieved articles will also be
recorded for eventual documentation in a study search
and data extraction flow diagram.
Available coordinates will be extracted from eligible

papers and entered into a data collection form. This
form will include (a) general information on studies in-
cluding authors and titles; (b) information about the par-
ticipants including, gender, age, and physical and mental
health status; (c) information about the level the study
on other moderator variables, including study type, ex-
perimental paradigm, and cognition modality (e.g. visual,
auditory); and (d) information concerning study charac-
teristics (e.g. publication year) and the risk of bias mea-
sures as defined by the Cochrane risk of bias tool.
Corresponding authors from eligible studies will be con-
tacted in order to request and obtain t-maps. In order to
review and synthesize studies qualitatively, reported co-
ordinates and peaks from t-maps (if available) will be
plotted in MNI space for visualization and discussed in
light of the methodologies employed and the authors’
conclusions.

Risk of bias and strength of evidence
The Cochrane risk of bias tool will be used to assess risk
of bias [30]. This tool encompasses six domains: selec-
tion bias, performance bias, detection bias, attrition bias,
reporting bias, and other bias (i.e. bias problems not
covered in the other domains). A table describing risk of
bias across these domains for each included study will
be provided to assess risk of bias within studies, as
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recommended [31]. The strength of evidence will be
assessed and reported using the GRADE system [32].

Statistical analysis
A decision-making process for choice of quantitative
statistical analysis is outlined as follows (Fig. 2). Should t-
maps be obtained, a combined coordinate and effect size-
based meta-analysis using SDM will be possible; if not, a
coordinate-only analysis using MKDA will be employed.
In order to choose between approaches, a significant
number of studies with available t-maps will need to be
drawn, particularly given the likely low number of eligible
studies available. Thus, if usable t-maps for 20% of studies
are received and the analysis suits pooling data from the
identified studies (given potentially differing methodo-
logical considerations), SDM analysis [26] will be per-
formed in the first instance. If less than 20% of studies
have associated t-maps, a coordinate-only analysis will be
performed using MKDA, after consideration of examining
the identified studies for suitability for pooling [33, 34].
SDM is an effect size-based approach that has been

used to pool coordinate and t-map data largely from pa-
tient and control groups [35, 36]. If SDM is chosen, ana-
lysis will be performed using the SDM tool package
(http://www.sdmproject.com). Available t-maps are sim-
ply converted to effect size d maps, and when only coor-
dinates are available, an unnormalized Gaussian kernel
(where a full width at half maximum is set, initially,
20 mm as recommended) is used to estimate effect size
of voxels around the peak, which itself can is the only ef-
fect size that can be exactly calculated. Here, a random
effects model would be implemented and carried out as
recommended [26], as applicable to pooling the identi-
fied studies. Each study will be weighted by the inverse
Fig. 2 Decision-making process for choice of meta-analytic approach.
SDM Seed-based d Mapping, MKDA Multi-Level Kernel Density Analysis
of the sum of its variance plus the between-study vari-
ance using the DerSimonian-Laird estimator [37], which
gives greater weight to studies with smaller variance or
larger sample size. The null hypothesis for SDM is that
effect sizes are randomly distributed throughout the
brain. Given that different t-maps will be thresholded
with different correction methods, a combination of
thresholds is recommended. Initially, an uncorrected
threshold of p = .005 allows analysis of the robustness
and heterogeneity of the findings with increasingly con-
servative thresholds.
MKDA is a coordinate-based approach that has been

previously used to assess the impact of psychopharmaco-
logical agents on neural activity [38]. The MKDA statis-
tic reflects the number of nominally independent
contrast maps (i.e. statistical parametric maps from indi-
vidual studies) that activate in the vicinity (e.g. within
10 mm) of each voxel in the brain; the null hypothesis is
that the activation “blobs” from individual contrast maps
are randomly distributed. Thus, a significant result indi-
cates that more contrast maps activate near a specific
voxel than expected by chance. If MKDA is chosen, ana-
lyses will be performed in MATLAB, using the MKDA
tool package [25; http://wagerlab.colorado.edu/files/
tools/meta-analysis.html]. MKDA difference analysis will
be conducted to directly contrast the OT and task type
conditions. The threshold for statistical significance will
be determined using a Monte Carlo simulation (5000 it-
erations) and provided family-wise error rate correction
for multiple comparisons at α < .05 corrected.
With the employment of either primary approach,

moderators will also be entered in as covariates in meta-
regression analyses. Where applicable, a Jackknife sensi-
tivity analysis—where the same analysis will be repeated
excluding one data point at a time—will determine if re-
sults are replicable. Given concerns surrounding publica-
tion bias in biobehavioural oxytocin research [39], a
funnel plot of meta-analytic peaks will be constructed
and analysed in order to determine publication bias in
the collected sample as outlined by Egger and co-
workers [40]. Moreover, between-study heterogeneity
will also be assessed by constructing heterogeneity Q-
maps (and corresponding p values). These maps will re-
veal brain regions that show significant between-study
heterogeneity.

Moderators
Many studies have explored the effects of OT on brain ac-
tivity both during a task and at rest; however, the specific
methods vary between studies. These methodological as-
pects include participant characteristics, experimental
paradigm, OT dosage, and fMRI-related methodological
differences. Moreover, the year of publication and overall
study quality may also influence study effect sizes. Thus,
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the following potential moderator variables will be exam-
ined a priori in this meta-analysis to account for hetero-
geneity in the literature.

1. Participants. The effects of OT may vary between
healthy and clinical populations. Thus, we will
examine whether population type acts as a
moderator for effect sizes. Furthermore, we will
examine whether effect sizes are moderated by
gender and age of participants.

2. Experimental paradigms. These paradigms can vary
in studies that investigate the effect of OT on brain
activity during tasks. For instance, the primary
modality assessed can include visual stimuli, auditory
stimuli, and executive function.

3. OT dosage. While 24IU is the typically administered
OT dose, other dosages are occasionally
administered. Considering the dose-dependent ef-
fects of OT [3], dosage will be included as a moder-
ator where applicable.

4. fMRI methodology. The potential moderating effect
of imaging package [41] and field strength will also
be investigated.

5. Year of publication. Early, more preliminary studies
may potentially exhibit different effect sizes due to
improvements in study methodology or publication
bias [42], so year of publication is included as an
additional moderator to potentially assess bias.

Discussion
There is growing interest in the neural correlates of intrana-
sal OT administration in an effort to better understand its
cognitive and behavioural effects. However, there is little
consensus on the specific brain regions associated with in-
tranasal OT administration and the impact of moderators
such as gender and experimental paradigm. The present
protocol describes the first systematic review and meta-
analysis of fMRI studies that investigate the impact of intra-
nasal OT. The inclusion of t-map data will provide greater
precision than a coordinate-only analysis. The confidence
in the body of evidence will also be assessed by measures of
study quality and publication bias. Identification of specific
brain regions underlying the effects of OT will assist future
research and help identify treatment targets.

Additional file

Additional file 1: PRISMA-P (Preferred Reporting Items for Systematic
Review and Meta-Analysis Protocols) 2015 checklist. Recommended items
to address in a systematic review protocol. (PDF 160 kb)
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