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Abstract 

Background The demand for high-quality systematic literature reviews (SRs) for evidence-based medical decision-
making is growing. SRs are costly and require the scarce resource of highly skilled reviewers. Automation technology 
has been proposed to save workload and expedite the SR workflow. We aimed to provide a comprehensive over-
view of SR automation studies indexed in PubMed, focusing on the applicability of these technologies in real world 
practice.

Methods In November 2022, we extracted, combined, and ran an integrated PubMed search for SRs on SR auto-
mation. Full-text English peer-reviewed articles were included if they reported studies on SR automation methods 
(SSAM), or automated SRs (ASR). Bibliographic analyses and knowledge-discovery studies were excluded. Record 
screening was performed by single reviewers, and the selection of full text papers was performed in duplicate. We 
summarized the publication details, automated review stages, automation goals, applied tools, data sources, meth-
ods, results, and Google Scholar citations of SR automation studies.

Results From 5321 records screened by title and abstract, we included 123 full text articles, of which 108 were SSAM 
and 15 ASR. Automation was applied for search (19/123, 15.4%), record screening (89/123, 72.4%), full-text selection 
(6/123, 4.9%), data extraction (13/123, 10.6%), risk of bias assessment (9/123, 7.3%), evidence synthesis (2/123, 1.6%), 
assessment of evidence quality (2/123, 1.6%), and reporting (2/123, 1.6%). Multiple SR stages were automated by 11 
(8.9%) studies. The performance of automated record screening varied largely across SR topics. In published ASR, we 
found examples of automated search, record screening, full-text selection, and data extraction. In some ASRs, automa-
tion fully complemented manual reviews to increase sensitivity rather than to save workload. Reporting of automa-
tion details was often incomplete in ASRs.

Conclusions Automation techniques are being developed for all SR stages, but with limited real-world adoption. 
Most SR automation tools target single SR stages, with modest time savings for the entire SR process and vary-
ing sensitivity and specificity across studies. Therefore, the real-world benefits of SR automation remain uncertain. 
Standardizing the terminology, reporting, and metrics of study reports could enhance the adoption of SR automation 
techniques in real-world practice.
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Natural language processing, Text mining
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Background
High-quality systematic literature reviews (SRs) and 
meta-analyses represent the highest level of evidence 
in evidence-based medicine, providing essential input 
to medical decision-making [1, 2]. While the number of 
published SRs in PubMed was 80 per day in 2019 [3], 
this number increased to 135 by 2021 [4]. The acceler-
ated development of novel medical technologies such 
as software and digital devices [5, 6], virtual reality [7], 
and chatbots [8] will push further the demand for high-
quality SRs [3, 9, 10]. Beyond medicine, systematic 
reviews are often performed in disciplines including 
engineering [11–13] or the social sciences [14, 15].

As the demand for SRs grows, keeping them up-to 
date is becoming increasingly challenging. The prepa-
ration of a SR is labor-intensive and time-consuming 
process requiring the scarce resources of highly skilled 
researchers. The typical lag for primary studies to be 
included in SRs is 2.5–6.5  years, delaying the transla-
tion of results to medical decision-making. Although 
the Cochrane Handbook recommends that SRs are 
updated biannually [16], 23% of SRs can become out-
dated within 2  years due to the omission of new evi-
dence that could impact their conclusions [17].

SR automation using artificial intelligence (AI) and 
advanced computing technologies has the potential to 
speed up the review process, reduce the workload of 
researchers, prevent human errors, and facilitate repro-
ducibility by diminishing the role of human judgement 
[18–20]. The feasibility of automation differs by stages 
of the SR workflow [21, 22], with search, record screen-
ing, full-text selection, data extraction, risk of bias 
assessment, evidence synthesis, and reporting being 
the most prominent examples [16, 21]. Automated 
assessment of evidence quality is also under investiga-
tion [23, 24]. Hence, recent SR methodological guide-
lines have addressed the use of automation tools. The 
Cochrane Handbook acknowledges the use of AI tools 
when updating SRs or using AI as a second reviewer 
alongside a human reviewer [16]. While the Handbook 
mentions active learning, it does not recommend its 
use on its own, and considers data extraction mainly 
as a manual process, despite citing some examples for 
automated data extraction. The latest PRISMA report-
ing standard also acknowledges the use of automation 
tools in record screening or priority ranking. It also sets 
out how to report the use of AI tools in the screening or 
risk of bias assessment stages of SR reports, including 
the training of the tool and the method used to meas-
ure its validity [25]. Automated risk of bias assessment 
is also a promising field for methodological innovation, 
but results are not yet convincing [3].

Despite some positive experiences, the uptake of SR 
automation tools is still limited [26, 27]. Trust in auto-
mated SRs is based on the availability of high-quality 
summary studies of their results. Accordingly, several 
authors have systematically reviewed automation tech-
nologies in various stages of the SR workflow. While aim-
ing for a comprehensive summary, these studies differed 
in their focus, search strategies, and number of included 
reports. The topics covered text mining for screening 
[22], data extraction [28], any automated SR stage [29], or 
identifying high-quality studies [30]. Previous SRs on SR 
automation illustrated the challenge of developing search 
strategies to identify relevant research articles in the field. 
The large number of SRs published on various informa-
tion retrieval, text mining, and AI applications makes it 
challenging to identify automated SRs, due to the large 
overlap in the terminology of these articles.

Due to the lack of specific search terms for articles on 
SR automation, the use of general terms such as “auto-
mated SR” carries the risk of low sensitivity, illustrated 
by the study of Dinter et al. [29], which, despite includ-
ing automation studies in all stages of the SR workflow 
and extending the electronic search with a manual snow-
ball technique, yielded fewer reports than earlier reviews 
focusing on a more specific aspect of SR automation [28]. 
On the other hand, the risk of low specificity was demon-
strated by the review of Adbelkader et al., which aimed to 
identify a special, yet clinically relevant subset of review 
automation use-cases [30]. Altogether, the growing inter-
est in automated SRs in medicine, and the somewhat 
diverse coverage of the field by SRs, warranted a scoping 
review of automated SRs.

By combining the search strategies of previous reviews, 
the objective of this study was to provide a comprehen-
sive overview of the scope of SR automation across vari-
ous stages of the SR workflow, as well as the adoption of 
automation techniques in published SRs among stud-
ies indexed in PubMed. Hence, we included both stud-
ies on SR automation methods (SSAM), and automated 
SRs (ASRs) (i.e., studies that used automation techniques 
when answering a primary research question unrelated to 
SR automation). Our research question referred to what 
SR stages were automated and what were the goals, the 
applied tools and methods, the data sources, and the key 
results of SR automation. We also performed a citation 
analysis to assess the research impact of SR automation 
studies (i.e., the extent to which their results were refer-
enced by academic researchers).

Methods
We followed the PRISMA-Scr reporting standard for 
scoping reviews [25]. The protocol for this study was not 
registered in advance.
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Automated systematic reviews
To define SRs, we used the general criteria proposed by 
Krnic-Martinic et  al. [31]. As such, SRs feature a well-
defined research question, a reproducible search strategy, 
clear inclusion, and exclusion criteria for relevant publi-
cations, reproducible selection and screening methods, 
critical appraisal of the quality or risk of bias for included 
studies, and reproducible data analysis or synthesis 
methods [31]. Throughout the review process, we con-
sidered as an SR automation tool any method that aims 
to speed up, assist, or replace manual reviewer tasks that 
require human judgement with an algorithm-based solu-
tion, while aiming to yield comparable results achievable 
by human reviewers. Papers reporting on tools that can 
potentially assist the SR workflow but are not developed 
or applied specifically for this purpose were excluded.

Inclusion and exclusion criteria
Using the definitions above, we included full-text English 
peer-reviewed articles of both SSAMs and ASRs with no 
limit on publication date.

We excluded bibliographic analyses, or text-based 
knowledge discovery studies or information retrieval 
studies from large corpora. These studies employ 
advanced analytical methods to generate new results, 
rather than reducing the workload for tasks that humans 
can achieve. Furthermore, we excluded narrative reviews 
and nonautomated SRs on SR automation or SR automa-
tion tools or methods.

Search strategy
We focused on published research in the medical field, so 
we limited our search on PubMed. The search was run on 
November 12, 2022. We extracted the search strategies of 
four published SRs on SR automation [22, 28–30], identi-
fied during the planning of this review (Additional file 1). 
The four strategies were combined into a single search 
syntax using the Boolean “OR” operator. We also run 
the four searches individually to count duplicate records. 
Abdelkader et  al. narrowed down their general search 
strategy by using terms that refer to the quality of the 
articles [30]. For our search, these terms were removed 
to achieve higher sensitivity. Furthermore, we replaced 
the “mp (multipurpose)” Ovid Medline field with “Title/
Abstract” in our PubMed search. The search syntax is 
provided in Additional file 2.

Screening and selection of studies
Screening of titles and abstracts was completed indepen-
dently by three single researchers (BT, LB, ZZ) on the 
combined record set. Uncertain items were discussed. 
Full-text papers were then evaluated by two independent 

reviewers against the inclusion and exclusion criteria 
(BT, ZZ). In case of disagreement or if reviewers were not 
sure whether an article was suitable for inclusion, they 
discussed its eligibility, and a joint decision was made.

Data extraction
Two reviewers (BT, ZZ) extracted data from each eligi-
ble article using a predesigned spreadsheet. A senior 
reviewer (ZZ) compared and consolidated the extracted 
items. These encompassed publication meta-data, 
including details such as the first author’s name, publi-
cation year, article title, and the PubMed ID (PMID) for 
each article. Additionally, we collected information about 
the article type, categorizing them as either SSAMs or 
ASRs. Furthermore, we identified the SR stage where 
automation was applied, such as search, record screen-
ing, full-text selection, data extraction, risk of bias assess-
ment, evidence synthesis, assessment of evidence quality, 
and reporting. Assigning automation methods to the 
appropriate SR stages was challenging due to the diver-
sity of approaches. In Table 1, we provide positive exam-
ples illustrating our decisions to categorize automation 
methods within specific automated SR stages, as well as 
negative examples showing instances when a method 
was excluded or categorized elsewhere among the auto-
mated SR stages. We considered only the laborious exe-
cution parts of the SR workflow, omitting the steps of 
the review planning phase [16]. We also extracted details 
about the input text used, including the title, abstract, full 
text, or metadata. In addition, we gathered information 
about the text representation methods employed, which 
ranged from basic techniques such as bag-of-words or 
term frequency to more advanced methods such as vec-
tor representation and large language models. Moreover, 
if reported, we recorded the best performing machine 
learning models or algorithms used for text classification 
and task learning. We took note of the accessible corpora 
used for learning or testing, along with their weblinks 
if provided in the studies. Additionally, we recorded 
information about off-the-shelf or freeware automation 
software utilized in the studies, including any available 
weblinks. We noted if multiple packages were used from 
a single software environment (i.e., R, Python) without 
detailing the individual tools. Furthermore, we docu-
mented notable methodological details that had potential 
impact on results, such as experimentation with different 
feature sets or addressing feature imbalance. Finally, we 
noted key results related to performance metrics, includ-
ing recall (sensitivity), precision (positive predictive 
value), workload-saving, time-saving, or any other signifi-
cant metrics as reported by the authors.

As a proxy of potential research impact, we added the 
number of Google Scholar (GS) citations of the included 
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studies, collected on 16th July 2023. Finally, from ASRs, 
we extracted the research aims, the number of records 
and included studies, key results, the automated SR stage, 
and the applied SR automation tools and their reported 
performance.

Data synthesis
We analyzed data via descriptive methods. We counted 
the number of eligible papers on automation methods 
and automated systematic reviews by publication year, 
and by the SR stage, and reported time savings by each 
automated SR stage. We also tabulated the key charac-
teristics of ASRs, and if reported, we calculated work-
load saved on screening from the proportion of records 
screened using automated tools, assuming that screen-
ing replaced manual work. If not reported otherwise, we 
assumed that manual tasks were performed by a single 
reviewer.

Results
Results of the literature search
The four search strategies yielded 5484 hits, with only 
163 duplicate records (3.0%), suggesting minimal 

overlap between previous SRs on SR automation. The 
combined search yielded 5321 results, out of which 411 
potential eligible records were sent to full text screen-
ing. A further 288 articles were excluded during full 
text screening for various reasons (Additional file  3). 
Finally, 123 articles were included (Figs.  1 and 2). We 
found 15 ASR studies (12.2%), and 108 papers reporting 
SSAMs (87.8%). The extracted data from all included 
studies are summarized in Additional file 4.

Characteristics of the included studies
Date of publication
The first included paper was published in 2006. It inves-
tigated whether automation could reduce the SR work-
load. The study suggested that 20–50% time could be 
saved with a 95% recall level during abstract screening 
by using a bag of words model and a voting perceptron 
machine learning classifier [32]. Since 2014, the num-
ber of studies increased rapidly with 56.1% (69/123) 
of included papers published from 2019 onwards. We 
found automation examples for all stages of the SR 
workflow (Fig. 3).

Fig. 1 PRISMA flowchart of selected reviews
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Search
Nineteen included papers (15.4%) aimed to automate or 
improve database searches [18, 33–50]. The first included 
paper from 2011 applied text-mining to construct a 
search syntax for PubMed, using the Apache Lucene plat-
form [33]. Eleven papers used a plethora of text-mining 
tools to aid search syntax building, such as Anne O’Tate, 
AntConc, Apache Lucene, BiblioShiny, Carrot2, CitNet-
Explorer, EndNote, Keyword‐Analyzer, Leximancer, Lin-
go3G, Lingo4G, MeSH on Demand, MetaMap, Microsoft 
Academic, PubReMiner, Systematic Review Accelerator, 
TerMine, Text Analyzer, Tm for R, VOSviewer, Voyant, 

Yale MeSH Analyzer, and in-house solutions [18, 33–35, 
37, 41, 46, 47, 49–51]. Two papers introduced curated 
article collections, such as Cochrane CENTRAL [44], 
and the Realtime Data Synthesis and Analysis (REDASA) 
COVID-19 dataset [48], which were assembled using 
various automation techniques. Other tools included an 
automated extension of PubMed searches to the Clinical-
Trials.gov database [40], a Boolean query refiner [42], a 
support vector machine (SVM) classifier as alternative to 
PubMed search filters for review updating [38], a strat-
egy using the Patient, Intervention, Comparator, and 
Outcome framework (PICO) terms in the title field only 

Fig. 2 Distribution of articles by publication year

Fig. 3 Number of articles by automated stage of the systematic literature review (SR) process. *Articles with automation of multiple SR stages were 
counted at each stage
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[39], an automated full-text retrieval and targeted search 
replacing database screening [45], and a Microsoft Excel-
based convenience tool to build Boolean queries [43].

Record screening
The most popular SR automation approach was 
record screening based on titles and abstracts (N = 89, 
72.4%). Within this approach, automated classification 
(N = 32/89, 36.0%) was the most frequently reported 
strategy [32, 52–82]. In automatic classification, a subset 
of manually screened records is used to train a machine 
learning classifier, which proposes records that should 
undergo manual full-text selection. The second most 
prevalent strategy was active learning (N = 24/89, 27.0%) 
[83–106]. In active learning, a small seed group of rel-
evant records is used for initial training. Records are 
manually screened by the order of relevance predicted 
by the model. Using the results, the model is periodi-
cally retrained until finding relevant records becomes 
unlikely. In the third most used strategy, review updates, 
all included papers and excluded records of a published 
review are used for training, and the aim is to predict 
the inclusion of a record from new search results in the 
updated review (N = 12/89, 13.5%) [107–118]. The pri-
ority ranking strategy (N = 10/89, 11.2%) [119–128] was 
used least often. This strategy predicts the priority of 
records after single training round. By screening relevant 
records early, subsequent phases of the SR can advance 
faster. Other studies applied a combination of strate-
gies [41, 129], used alternative methods such as filtering 
[18], or similarity of Medline elements [130], reported 
the automation software without detailing the strategy 
[131–133], used convenience tools to speed up screening 
[134, 135], or omitted record screening and applied topic 
modeling directly to full-text selection [45].

SVM was by far the most prevalent machine learning 
method, usually used in ensemble models (N = 24/89, 
27.0%) [52, 53, 59, 60, 66, 68, 70, 72, 83–87, 89, 91, 92, 
96, 106, 108, 116, 119–121, 129], followed by naïve Bayes 
(N = 7, 7.9%) [54–57, 74, 116, 133], and logistic regression 
(N = 7, 7.9%) [58, 61, 70, 93, 95, 112, 114]. More recent 
developments included the use of similarity-based met-
rics [88, 109, 115, 130], and advanced neural networks, 
including a feed-forward neural network [69], bidirec-
tional long-short-term memory network (BiLSTM) [93, 
100], deep learning [102], and networks integrated in 
large language models (e.g., bidirectional encoder rep-
resentations for transformers, BERT) [71, 79]. Studies 
in which the machine learning model was not specified 
(N = 30/89, 33.7%) often reported the use of off-the shelf 
automation software (N = 27/89, 30.3%).

As an input to machine learning models, most often 
bag-of-words (BOW) text representations were applied 

(N = 30/89, 33.7%) [32, 41, 52, 54–56, 59, 61, 68, 72, 82, 
84, 85, 87, 89, 92, 93, 95, 96, 100, 106, 108, 110, 112, 114, 
115, 119–122], followed by term-frequency/inverse doc-
ument frequency (TF-IDF) (N = 16/89, 18.0%) [45, 53, 57, 
60, 63, 66, 68, 73, 76, 83, 91, 109, 115, 116, 122, 123], topic 
models (N = 10/89, 11.2%) [45, 60, 84, 86, 91, 93, 104, 107, 
109, 115, 123], keywords (N = 9, 10.1%) [52, 75, 76, 91, 98, 
100, 117, 123, 127], standardized terms such as Medical 
Subject Headings (MeSH) (N = 6/89, 6.7%) [59, 61, 76, 88, 
119, 123], or semantic annotation to the Unified Medical 
Language System (UMLS) (N = 6 /89, 6.7%) [55, 63, 83, 
88, 104, 119], named entity recognition [74, 79, 93], vari-
ous word or document vector representations (N = 10, 
11.2%) [41, 68, 70, 75, 86, 100–102, 104, 115], or vari-
ous BERT models (N = 5, 5.6%) [69, 71, 79, 81, 118]. As 
raw input, most studies used PubMed records including 
title, abstract, MeSH terms, and in a few instances, bib-
liographic details. Few studies used full-text input (N = 5, 
5.6%) [45, 63, 98, 125, 127] and database records from 
ClinicalTrials.gov or Cochrane (N = 4/89, 4.5%) [78, 79, 
109, 115]. We note that some studies were conducted on 
published SR databases, such as the EPPI Centre database 
[60, 83, 84, 86, 89] or those from the Oregon Drug Effec-
tiveness Review Project (DERP) [32, 41, 54, 68, 77, 87, 88, 
93, 107, 120–122, 130]. Links to public SR resources were 
extracted and provided in Additional file 4.

The off-the shelf or freeware screening automation 
software were Abstrackr [90, 94, 97, 98, 105, 113, 132], 
EPPI Reviewer [80, 128, 132, 136], RobotAnalyst [91, 94, 
113, 131], Distiller SR [94, 99, 126], Rayyan [103, 131], 
Systematic Review Accelerator [18, 135], RCT Tagger [77, 
78], SWIFT Review [125, 126], SyRF [92, 111], ASR (auto-
mated systematic review) [67], ASReview [133], Aggre-
gator [58], ATCER [63], Cochrane RCT Classifier [72], 
Covidence [131], Curious Snake [83], DoCTER [65], GAP 
Screener [52], MetaPreg [74], Research Screener [102], 
revtools [134], RobotAnalyst, and TeMMPo [124]. The 
detailed description of these tools is beyond the scope 
of this study. The weblinks to these tools were extracted 
from the references and are provided in Additional file 4.

The great variety of applied automation strategies, 
reported performance metrics, and applied datasets 
prevented a level performance comparison of auto-
mated record screening tools. A key observation is that, 
although the mean performance of automation tools 
improved over time, their performance varied greatly 
across different research topics covered by SRs. On 15 
SRLSs of the Oregon DERP dataset, the mean work-
load saved over sampling at 95% recall (WSS@95) of 
automation tools increased from 23.4% in 2006 (range 
0.31–70.5%) [32] through 33.5% in 2010 (range 8.5–
62.5%) [54], 37.1% in 2015 (range 9.0–74.3%) [130], to 
48.4% in 2016 (range 13.7–82.6%) [122] and 41.0% in 
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2017 (range 5.8–81.6%) [88]. On the same dataset, the 
WSS@95 of Rayyan was 49 ± 18% [87].

The variability of performance was illustrated by the 
post hoc analysis of results using a PICO-based term 
recognition strategy in study titles. The single keyword 
“Parkinson’s”, appearing in most records of a SR, deteri-
orated the specificity of the automated screener leading 
to only 11% workload savings. When omitting terms 
related to participants, the workload savings increased 
to 57% in the same dataset. In contrast, the original 
strategy yielded 78% workload savings in an SR focused 
on phenytoin use for seizure prophylaxis in brain injury 
[39].

The time saving achieved by automated record 
screening also varied. Based on the averted screen-
ings and mean screening time per record, the median 
estimated time saving was 29.8  h per review (range 
11.7–198 h) across 10 SRs, with a mean time saving of 
32.5 s per record (range 18.1–43.5 s) [99]. Using a simi-
lar approach, another study reported median estimated 
time saving of 26 h across 16 SRs (range 9–42 h), with 
a mean time saving of 22.6  s per record in a subset of 
10 SRs (range 9.6–27.0  s) [97]. Other studies reported 
23.5 [67], 44.7 [98], and 61-, 64-, and 92-h [94] time 
savings per SR. In the study of Hamel et  al., the esti-
mated median time saving increased from 29.8 to 36 h 
when the averted workload of full-text selection was 
also considered [99]. Time savings were also affected 
by the learning curve of reviewers. In a SR involving 
10,599 records, manual screening of all records took 
61 h (20.7 s per record), while screening the first 1809 
records to train the automation tool took 16.3 h (32.4 s 
per record). Measured by activity logging, the time sav-
ings per record were 15.2 s [98].

Full‑text selection
Six papers (4.9%) focused on automated full-text selec-
tion. Most studies searched keywords using text-min-
ing tools. The first paper, an ASR from 2016 [137], used 
Linux bash to search keywords in full-text PDF files. 
Another study comparing automation with duplicate 
human reviewers used QDA Miner [98]. An environmen-
tal health SR used the segmenteR R package to extract 
terms from specified article sections [127]. A large 
environmental health ASR used Distiller SR [126]. Two 
studies aiming to dramatically speed up the SR process 
applied a convenience tool for navigation and full-text 
management in a reference management software (Sys-
tematic Review Accelerator) [18, 135].

Time saving was reported in one study: 30.5  h were 
saved on the automated full-text selection of 555 articles 
(198 s per article) [98].

Data extraction
Thirteen studies (10.6%) involved an automated data 
extraction tool. The first paper published in 2010 intro-
duced ExaCT, a rule-based tool to extract clinical trial 
characteristics [138]. The efficiency of ExaCT was pro-
spectively compared with that of human reviewers, 
and showed modest time savings [139]. Further four 
papers applied text mining to create structured sum-
maries of relevant pieces of information from full text 
documents. Out of these, three studies used in-house 
packages including UMLS semantic annotation [51], 
keyword search [127], and PICO entity recognition 
using BERT [81]. The fourth tool, developed for public 
health purposes, Dextr [140] combined vector embed-
ding text representation and deep learning. Further 
approaches included PECO tagging in a rapid evidence 
mapping study using SWIFT Review [125], extrac-
tion of geographic locations from the manuscript [141], 
extraction of endpoints as comparative claim sentences 
[142], data extraction from ClinicalTrials.gov for meta-
analyses [143], and convenience tools to highlight rel-
evant sentences [74], or extract data from graphs [144]. 
Finally, development of the REDASA COVID-19 dataset 
involved human experts in the loop, web-crawling, and a 
natural language processing search engine to provide a 
real-time curated open dataset for evidence syntheses to 
aid pandemic response [48].

Using automated data extraction, the mean time sav-
ings per included study were 454 [140], 691 [139], and 
1440 [143] s. The synthesized outcomes per study ranged 
between 5 [140] and 24 [143]. The time savings depended 
on the applied automation strategy. In a study by Gates 
et al. [139], when automated data extraction was used to 
expedite a second reviewer, the time savings were 3.7 h 
on a SR involving 75 studies. However, when automation 
replaced the second reviewer, the time saving increased 
to 14.4  h. The mean time savings were 352  s per graph 
when using a convenience data extraction tool [144].

Risk of bias assessment
Nine (7.3%) studies looked into the automation of risk of 
bias assessment. The first studies were published in early 
2016 introducing RobotReviewer [145] and an alternative 
prototype tool, Systematic Review Assistant [146]. Both 
tools were trained on the Cochrane Database for System-
atic Reviews. Following the Cochrane Risk of Bias (RoB1) 
tool for randomized controlled trials (RCTs), RobotRe-
viewer provides an overall assessment of risk of bias, and 
extracts supporting sentences from PDF files of full-text 
reports [145]. RobotReviewer was used in an additional 
five studies [18, 135, 147–149]. One paper assessed the 
risk of bias in preclinical animal studies, comparing 
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various techniques including recurrent neural networks 
with attention, convolutional neural networks, and BERT 
[150]. Tangentially related to risk of bias assessment, an 
environmental health study automatically ranked papers 
based on their data quality [127].

Using RobotReviewer, the mean time saving on auto-
mated risk of bias assessment per study was 69  s in 52 
RCTs (755 vs 824  s) [147]. In another SRs, risk of bias 
assessment using seven domains of the Cochrane Collab-
oration’s RoB1 tool needed 23 h and 40 min for 16 studies 
(5340 s per study), while RobotReviewer finished in 2 h 
and 12 min assessing four risk of bias domains (495 s per 
study), saving 4845 s per study [135].

Evidence synthesis
We identified two papers on automated evidence synthe-
sis, both published in 2022. One of them applied a full SR 
automation workbench involving automated data extrac-
tion followed by combined script for effect size calcula-
tion and meta-analysis (MetaPreg) [74]. The other paper 
introduced the DIAeT tool for generating qualitative evi-
dence summary sentences from clinical trials [151].

Assessment of evidence quality
We identified two papers focusing on the automated 
assessment of evidence quality using a semi-automated 
quality assessment tool (SAQAT). SAQAT is based on a 
Bayesian network classifier that assigns probabilities to 
overall GRADE (Grades of Recommendation, Assess-
ment, Development, and Evaluation) categories using 
a set of standardized questions. Both papers were pub-
lished in 2015 [23, 24].

Reporting
We identified one study from 2022, where automated 
report generation was part of an integrated SR automa-
tion workflow using MetaPreg, an integrated SR automa-
tion platform focusing on medicines during pregnancy 
[74].

Automating multiple stages of the SR workflow
While most papers focused on a single SR stage, eleven 
studies (8.9%) automated multiple stages. Using the Sys-
tematic Review Accelerator, a team a team was able to 
complete the SR process within a 2-week timeframe by 
automating multiple SR stages including search, record 
screening, full-text selection, and risk of bias assess-
ment [18, 135]. In one of these studies, time savings were 
documented versus a manual work. The SR involved 586 
records and 16 studies. The full manual review took 126 h 
(out of which 25 h was spent on task learning), and auto-
mation was applied on SR stages taking 41 h and 33 min 
to complete (out of which learning time was 6 h 5 min). 

For the same SR stages, automation took 11 h and 48 min 
(including 1 h and 18 min for learning the tasks), saving 
30  h, which amounted to 23.8% of the total completion 
time. Another team also automated multiple steps of the 
SR using MetaPreg and finished a SR in 14 days, saving 
10.7 workdays compared to a conventional SR approach 
[74]. Others combined multiple open-access tools includ-
ing SWIFT Review, R, and Python packages to automate 
the record screening, full-text selection, and data extrac-
tion of a SR on the toxic effects of nanomaterials [127]. 
Some studies combined two stages from either search, 
screening, full-text selection, or data extraction. These 
studies included two ASRs [45, 126], studies on alterna-
tive SR approaches, such as Rapid Evidence Mapping 
[125] and Potential Technologies Review [41], and the 
REDASA COVID-19 dataset [48]. A study used auto-
mated record screening before evaluating a text mining 
algorithm for full text selection [98], and another auto-
mated record screening in connection with PICO named 
entry recognition for data extraction [81].

Google Scholar citations
The average number of citations per article was 122.3 
(range 0–9015, median 22). The most cited paper (pub-
lished in 2016) introduced Rayyan, a leading SR platform 
(N = 9015) [87], followed by an ASR on mindfulness for 
smoking cessation (N = 526) [49], a study introducing 
Curious snake, a freeware active learning-based screen-
ing automation tool (N = 323) [83], the seminal study 
from Cohen et  al., introducing an automated classifier 
tool and WSS@95, a key performance metric for screen-
ing automation (N = 320) [32], and an ASR on leptospi-
rosis transmission (N = 304) [37]. Further nine SSAMs 
[18, 54, 84, 86, 122, 129, 134, 138, 145] and two ASRs [80, 
136] received over 100 citations. From the nine highly 
cited SSAMs, four introduced automation tools, such as 
the revtools R package for screening [134], the SWIFT 
Review text mining tool [122], ExaCT for automatic 
extraction of clinical trial data [138], and RobotReviewer 
for automated assessment of risk of bias in clinical trials 
[145], and five reported methodological innovation, such 
as completing a SR in 2 weeks [18], reducing workload in 
extreme reviews with 1 million records [129], certainty-
based screening in active learning [84], topic detection 
based on paragraph vectors in active learning [86], and 
an improved automated classification algorithm [54].

Summary of automated systematic reviews
The topics of ASRs were usually broad, with on average 
17,952 records (range 962–52,219) and 691 included 
studies (range 13–6305). From the 15 ASRs, four (26.7%) 
reviews automated the search [33, 37, 45, 49], eleven 
(73.3%) the screening [45, 67, 80, 100, 103, 110, 111, 126, 
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133, 136], two (13.3%) the full text selection [126, 137], 
and one (6.7%) the data extraction phase [141]. One study 
did not report the software [100], six used open source 
software [33, 37, 45, 110, 137, 141], and eight studies used 
off-the shelf tools [49, 67, 80, 103, 111, 126, 133, 136]. 
Three studies (20.0%) reported recall with values between 
96% and 100% [67, 111, 126]. Workload saved on screen-
ing could be obtained from eight (53.3%) studies [45, 67, 
100, 110, 111, 126, 136, 137] with values ranging between 
31.7% and 100%. Some studies used automated screening 
to extend manual searches, thereby increasing the sensi-
tivity of the reviews at the cost of minimal extra screen-
ing effort [67, 103]. Details of the ASR are provided in 
Table 2.

Discussion
We provided a comprehensive overview of SR automa-
tion studies across all stages of the SR workflow, featuring 
a detailed catalogue of 123 articles indexed in PubMed 
and published until November 2022. The number of 
papers and available tools has shown rapid growth over 
time. Automation tools were developed for all stages of 
the SR workflow, with majority of research (72%) focus-
ing on the record screening phase. Most included articles 
(88%) were SSAMs with only 12% ASRs, suggesting that 
the uptake of SR automation tools in real practice is still 
in its infancy. The use of automated search, screening, 
full text selection, and data extraction was demonstrated 
in published ASRs, even in combination [126].

It has been demonstrated that an integrated automa-
tion workflow over multiple SR stages can lead to sav-
ings in reviewer effort and expedite the SR process [18, 
74, 135]. While some integrated SR automation tool-
kits are available [18, 74, 135], most available tools can 
automate only a single SR stage, with potentially lim-
ited impact on the entire review process. Even when 
employing automation on multiple SR stages, the time 
savings compared to the total review process duration 
remained modest [135]. It is difficult to predict what 
are the effects of SR automation on the entire review. 
The performance of automation tools varies largely 
across review topics [32, 39, 54, 122, 130]. Achievable 
time savings depend on various factors, including the 
extent to which automation replaces human reviewers 
[139], the impact of automating one SR stage on the 
workload of subsequent review tasks [99], the baseline 
speed of the manual reviewer team [135, 147], the com-
plexity of the research question [140, 143], the learn-
ing curve of reviewers [98], and the overall size of the 
review (i.e., the number of records and eligible articles). 
We note that some studies reported time savings based 
on actual measurements, while others relied on esti-
mates. In general, the little detail was provided about 

the measurement methods of time savings. Moreover, 
the diverse automation strategies, datasets, and perfor-
mance metrics complicate the assessment of the utility 
of available tools. Altogether, standardized reporting 
practices and evaluation metrics would be helpful to 
keep track of the progress in SR automation. The fre-
quently incomplete reporting of automation perfor-
mance in ASRs also calls for better reporting standards.

Workload savings via automated record screening may 
come at the cost of imperfect sensitivity, which has been 
shown to impact the results of meta-analyses [97]. The 
consequences of reduced sensitivity may vary between 
SRs and should be carefully considered on a case-by-case 
basis. However, automation can increase the sensitivity 
of SRs, when applied in addition to manual screening. 
In some ASRs, extending manual work with automated 
record screening increased the sensitivity of SRs with 
minimal extra effort [67, 103].

The citation analysis provided insights into the most 
impactful research articles concerning SR automation. 
While the introduction of an off-the self SR management 
tool was the most cited paper in this review [87], some 
highly cited papers indicated considerable interest about 
open-source tools [83, 134], multiple stages of automa-
tion including screening [83, 134], text mining [122], data 
extraction [138], and risk of bias assessment [145]. Solu-
tions enabling extreme performance, such as completing 
a SR in 2 weeks [18] or the screening of 1 million records 
[129], were also frequently cited.

Compared to existing reviews in SR automation, our 
review has unique features. Although the SR automa-
tion toolbox, an online inventory of SR automation tools, 
provides a comprehensive collection of available solu-
tions [152], our review also covered methods in develop-
ment and published SRs using automation techniques. By 
combining the search syntaxes of four published reviews 
in the field, the coverage of our study was broader than 
reviews focusing on specific aspects of SR automation, 
including a review of text-mining for study identifica-
tion (N = 44) [22], data extraction (N = 26) [28], retrieval 
of high-quality clinical studies (N = 10) [30], SR soft-
ware packages including those with automation features 
[153, 154], reviews using AI-based automation (N = 12) 
[155], a living review of automated data extraction tools 
(N = 53) [156], or the syntheses of workload reduction 
via automated screening (N = 21 and N = 86) [27, 157]. 
Some reviews aimed for full coverage of SR automa-
tion. Van Dinter et al. [29] identified 41 studies, while a 
recent scoping review on the use of AI in biomedical lit-
erature analyses covered 273 research articles, although 
with broader focus including the assembly of evidence 
(N = 127), literature mining (N = 112), and quality analy-
sis (N = 34) [158].
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Automation or semi-automation of record screen-
ing was the most active area of research covered by sev-
eral systematic reviews. A review of 44 studies reported 
WSS@95 values between 30% and 70% [22]. A meta-anal-
ysis of 15 studies reported WSS at maximal recall levels 
in a range of − 0.3% to 89.7%. Mean recall was 92.8% (95% 
CI 87.8–95.8%) in this sample [157]. A recent meta-anal-
ysis of 21 studies reported mean WSS@95 of 55% (95% 
CI 51–58%) [27]. Similar to our findings, the authors 
commented on diverse reporting practices, and the scar-
city of direct comparative studies on automation tools 
[22, 27]. While considerable workload savings are achiev-
able, consistent performance at high recall levels is still 
elusive, leaving human screening indispensable [157].

The low overlap between the search results of previous 
SRs on SR automation underscore the challenges associ-
ated with identifying relevant research in this field. These 
challenges arise due to the blurred boundaries between 
SR automation and more general approaches in medi-
cal information management. For example, the seminal 
article by Aphinyanaphongs from 2005 [159], which is 
considered by many authors as the inaugural paper for 
automated record screening, was excluded during our 
record screening due to the lack of specific reference to 
systematic reviews. Conversely, we excluded many papers 
on methods with potential applicability for systematic 
reviews, but without testing their performance in a sys-
tematic review context.  Furthermore, some web-based 
SR tools with automation features were not captured by 
our search (e.g., Nested Knowledge) [160]. Standardized 
terminology, performance criteria, evaluation methods, 
and reporting of SR automation research papers would 
help the scientific community to keep track of the devel-
opments and make informed decisions about the adop-
tion of SR automation tools. At the meeting point of 
medicine and computer science, the consolidation of 
terminology, definitions, and reporting standards seems 
to be a general challenge including digital health [161] or 
medical AI research [162].

The breadth and depth of our review, the coverage of 
both methodological development and the application 
of automation methods, and unique elements, such as 
citation analysis, are strengths of our review. However, 
our research has limitations. The search was restricted 
to PubMed, the main resource for biomedical literature. 
However, relevant papers indexed elsewhere may have 
been missed. The four SRs from which search syntaxes 
were combined were identified informally, so some rel-
evant syntaxes may have been missed from our combined 
search syntax. Also, although uncertain items were dis-
cussed, some records may have been lost in the screening 
by single reviewers. Furthermore, some decisions about 
the eligibility of certain papers were challenging, and 

relied on personal judgements, despite the predefined 
inclusion and exclusion criteria. The same applies to our 
judgements during data extraction, when characteriz-
ing the sometimes abundant and complex methodologi-
cal details of studies. However, the accidentally omitted 
records or methodological details would not alter the 
overall findings of our review. Furthermore, the citation 
analysis could not differentiate whether the citations 
referred to the general review management or review 
automation use case of some tools (e.g., Rayyan). While 
our review focused on SRs of biomedical literature, we 
assume that findings about the applied technologies and 
focus of research may be generalized to automated SRs in 
scientific fields outside medicine.

Conclusions
While record screening is the most active area of 
research, automation tools are being developed for all 
stages of the SR workflow (i.e., search, record screening, 
full-text selection, data extraction, risk of bias assess-
ment, evidence synthesis, assessment of evidence qual-
ity, and reporting) and have been shown to save reviewer 
effort or expedite the SR process. However, the real 
world adoption of SR automation techniques is still lim-
ited. The performance (i.e., sensitivity and specificity) of 
automation techniques varies largely between SRs, and it 
is difficult to predict their ultimate benefit in real world 
applications. Most tools are available for the automa-
tion of a single SR stage, while the potential time savings 
compared to the entire review process are modest even 
if multiple stages or the SR workflow are automated. 
Standardized terminology, reporting practices, and eval-
uation metrics would enhance the real-life adoption of 
SR automation practices. Given the increasing demand 
for evidence syntheses in medical research and medical 
decision-making, it is important that more researchers 
become familiar with the use of SR automation tech-
niques, and experience accumulates over a greater evi-
dence base. Until the benefits and risks of SR automation 
are better understood, automation tools could be used 
more often in parallel with manual reviews. Comple-
menting manual reviews with automation techniques 
could facilitate the developments in the field, with poten-
tially increasing the sensitivity or quality of published SRs 
with acceptable extra reviewer effort.
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