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Abstract 

Objectives In a time of exponential growth of new evidence supporting clinical decision-making, combined 
with a labor-intensive process of selecting this evidence, methods are needed to speed up current processes to keep 
medical guidelines up-to-date. This study evaluated the performance and feasibility of active learning to support 
the selection of relevant publications within medical guideline development and to study the role of noisy labels.

Design We used a mixed-methods design. Two independent clinicians’ manual process of literature selection 
was evaluated for 14 searches. This was followed by a series of simulations investigating the performance of random 
reading versus using screening prioritization based on active learning. We identified hard-to-find papers and checked 
the labels in a reflective dialogue.

Main outcome measures Inter-rater reliability was assessed using Cohen’s Kappa (ĸ). To evaluate the performance 
of active learning, we used the Work Saved over Sampling at 95% recall (WSS@95) and percentage Relevant Records 
Found at reading only 10% of the total number of records (RRF@10). We used the average time to discovery (ATD) 
to detect records with potentially noisy labels. Finally, the accuracy of labeling was discussed in a reflective dialogue 
with guideline developers.

Results Mean ĸ for manual title-abstract selection by clinicians was 0.50 and varied between − 0.01 and 0.87 based 
on 5.021 abstracts. WSS@95 ranged from 50.15% (SD = 17.7) based on selection by clinicians to 69.24% (SD = 11.5) 
based on the selection by research methodologist up to 75.76% (SD = 12.2) based on the final full-text inclusion. 
A similar pattern was seen for RRF@10, ranging from 48.31% (SD = 23.3) to 62.8% (SD = 21.20) and 65.58% (SD = 23.25). 
The performance of active learning deteriorates with higher noise. Compared with the final full-text selection, 
the selection made by clinicians or research methodologists deteriorated WSS@95 by 25.61% and 6.25%, respectively.

Conclusion While active machine learning tools can accelerate the process of literature screening within guide-
line development, they can only work as well as the input given by human raters. Noisy labels make noisy machine 
learning.

Keywords Guideline development, Active learning, Machine learning, Systematic reviewing

*Correspondence:
Rens van de Schoot
a.g.j.vandeschoot@uu.nl
1 Knowlegde Institute for the Federation of Medical Specialists, Utrecht, 
The Netherlands
2 Department of Methodology and Statistics, Faculty of Social 
and Behavioral Sciences, Utrecht University, Utrecht, The Netherlands
3 Department of Research and Data Management Services, Information 
Technology Services, Utrecht University, Utrecht, the Netherlands

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13643-024-02590-5&domain=pdf
http://orcid.org/0000-0001-7736-2091


Page 2 of 10Harmsen et al. Systematic Reviews          (2024) 13:177 

Introduction
Producing and updating trustworthy medical guide-
lines is a deliberative process that requires a substantial 
investment of time and resources [1]. In the Nether-
lands, medical guidelines in specialist medical care are 
being developed and revised in co-production between 
clinicians and guideline methodologists. There are over 
650 medical specialists’ guidelines in the Netherlands, 
answering approximately 12,000 clinical questions. An 
essential element in guideline development is a system-
atic synthesis of the evidence. This systematic appraisal 
includes the formulation of clinical questions, selection 
of relevant sources, a systematic literature review, grad-
ing the certainty of the body of evidence using GRADE 
[2], and finally, translating the evidence into recommen-
dations for clinical practice [3].

Evidence synthesis starts with translating a clinical 
question into a research question. Hereafter, a medi-
cal information specialist systematically searches litera-
ture in different databases. Then, literature screening is 
performed independently by two clinicians who label 
relevant publications based on inclusion and exclusion 
criteria in the title or abstract. Once the relevant publi-
cations have been selected, a guideline methodologist 
with more experience in systematically selecting relevant 
publications from large datasets supports further title-
abstract selection, assessing the methodological quality 
of the selected papers. Literature screening is time-con-
suming, with an estimated 0.9 and 7  min per reference 
per reviewer for abstract and full-text screening, respec-
tively. Since a single literature search can easily result in 
hundreds to thousands of publications, this can add up 
to 100–1000 min of selection based on title and abstract 
and even more so for full-text selection [4]. In an era of 
exponential growth of new evidence, combined with a 
labor-intensive process, there is a need for methods to 
speed up current processes to keep medical guidelines 
up-to-date.

The rapidly evolving field of artificial intelligence (AI) 
has allowed the development of tools that assist in finding 
relevant texts for search tasks [5–16]. A well-established 
approach to increasing the efficiency of title and abstract 
screening is screening prioritization [17] via active learn-
ing [18]. With machine learning models, relevance scores 
for each publication can be computed. Then, assessors 
label titles and abstracts (relevant versus irrelevant) for 
each most relevant record, and the model iteratively 
updates its predictions based on the given labels and pri-
oritizes articles that are most likely to be relevant. Active 
learning is found to be extremely effective for systematic 
reviewing (see for a systematic review [19]).

 Implementing  active learning could save a tremen-
dous amount of work and time and may open a new 

window of opportunity in the context of evidence-based 
guideline development. However, active learning works 
under the strong assumption that given labels are cor-
rect [20]. While research with experienced reviewers 
may be straightforward, working with clinical questions 
and clinicians in the daily practice of guideline devel-
opment may be more complex. Most clinicians are not 
experienced with title-abstract selection and often per-
form this task in addition to their daily work in the clinic. 
With large numbers of abstracts and limited time, clini-
cians can become distracted or fatigued, introducing 
variability in the quality of their annotations. This vari-
ability in human performance may hinder the applicabil-
ity of active learning in guideline development. Given the 
potential of active learning and the more complex con-
text of guideline development, this practice-based study 
aimed to evaluate the performance and feasibility of 
active learning to support literature screening within the 
context of guideline development.

We aim to evaluate the added value of using active 
learning and the impact of noisy labels during three 
stages of the review process: (1) title abstract selection by 
clinicians, (2) additional title abstract selection by expe-
rienced research methodologists, and (3) final full-text 
inclusions after expert consensus. In what follows, we 
present the 14 datasets used and the workflow for man-
ual literature screening in guideline development and 
introduce the setup of active learning. This is followed by 
a simulation study mimicking the screening process for 
the 14 clinical questions, comparing the performance of 
literature screening using active learning versus manual 
selection in terms of work saved over sampling and the 
average time to discovery for identifying hard-to-find 
papers potentially having a noisy label [21, 22]. We then 
present the results of the discussion of the hard-to-find 
papers in a reflective dialogue with the research method-
ologists and evaluate reasons that facilitate or hamper the 
performance of active learning.

Methods
Datasets
We selected 14 clinical questions from recently pub-
lished clinical guidelines containing manually labeled 
datasets, providing a wide range of types and complex-
ity of clinical questions; see Table  1. The datasets were 
derived from different guidelines published between 
2019 and 2021, covering different types of questions, 
e.g., diagnostic, prognostic, and intervention types of 
questions. In order to be sure that the guidelines had 
been authorized and thus finished, we selected those 
that are openly published on the Dutch Medical Guide-
line Database [Richtlijnendatabase.nl]. Per clinical ques-
tion, two clinicians independently labeled title-abstracts 
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using prespecified inclusion and exclusion criteria. The 
datasets contained (at least) the papers’ title and abstract 
plus the labels relevant/irrelevant for each annotator 
(clinician and research methodologist) and the column 
with the final inclusion. Duplicates and papers with 
missing abstracts were removed from the dataset. All 
datasets can be found on the Open Science Framework 
page of the project: https:// osf. io/ vt3n4/.

Manual screening
To evaluate inter-rater reliability for the manual literature 
screening, we used Cohen’s Kappa index measure [23]. 
Cohen’s Kappa gives relevant information on the amount 
of consensus among different raters with higher scores 
indicating better interrater agreement.

Simulation
Utilizing the labeled datasets, we conducted various sim-
ulation studies to explore the intricacies of model perfor-
mance. Each simulation emulates the screening process 
using a specific model, guiding the algorithm through 
the dataset according to predefined strategies using a 
specific active learning model. The performance is typi-
cally evaluated by randomly screening a labeled dataset. 
This setup allows the simulation to replicate the screen-
ing process, akin to a researcher conducting AI-assisted 
screening, thereby providing a realistic representation of 
how the model would perform in practical applications. 
These simulations are distinct from traditional statisti-
cal simulation studies in several key aspects. Firstly, the 
primary objective of our simulations is to evaluate the 
efficacy of AI algorithms in literature screening. This is 
in contrast to typical statistical simulations, which often 

focus on assessing theoretical statistical properties such 
as power, bias, or variance under various hypothetical 
scenarios. Also, we make use of real-world, labeled data-
sets, diverging from the standard practice in statistical 
simulations that frequently rely on hypothetical or syn-
thetically generated data. This use of actual data from lit-
erature ensures a more practical and application-oriented 
assessment of the model’s performance.

The simulations were conducted with the command 
line interface of ASReview version v0.16 [24]. ASReview 
has been proven to be a valid tool for the selection of 
literature in numerous studies [15, 21, 25–33]. We used 
Naïve Bayes as the classifier for the simulation study with 
TF-IDF as the feature extraction technique.

In our study, each dataset underwent simulations tar-
geting different sets of relevant records as defined by 
three groups: (1) clinicians, (2) a combination of clini-
cians and research methodologists, and (3) the final 
inclusion decisions. We included one relevant record 
as a prior inclusion for each simulation’s training data, 
along with ten randomly selected irrelevant records. We 
conducted multiple runs for each dataset to mitigate the 
potential bias introduced by the starting paper in the 
model’s first iteration, varying the relevant paper used 
in the initial training. The outcomes are averaged over 
these runs to ensure a balanced assessment. Consistency 
was maintained within each run of a dataset by using the 
same ten irrelevant records.

We analyzed the model performance of active learn-
ing by calculating the following three outcome measures: 
the Work Saved over Sampling (WSS), which indicates 
the reduction in publications needed to be screened at a 
given level of recall [17]. The WSS is typically measured 

Table 1 Descriptive characteristics of the purposefully selected datasets (n = 14)

# Guideline topic Medical specialty Type of question N Screening time 
(min)

К

1 Radial fractures approach General surgery Intervention 195 225 0.31

2 Radial fractures closed reduction General surgery Prognostic 277 294 0.55

3 Hallux valgus prognostic Orthopedic surgery Prognostic 640 327 0.64

4 Head and neck cancer bone Otolaryngology Diagnostic 311 253 0.87

5 Head and neck cancer imaging Otolaryngology Diagnostic 56 72 0.61

6 Obstetric emergency training Obstetrics Intervention 188 275 0.61

7 Post-intensive care treatment Rehabilitation Intervention 435 388 0.05

8 Pregnancy medication Obstetrics Intervention 428 243 0.66

9 Shoulder replacement diagnostic Radiology Intervention 215 123 0.59

10 Shoulder replacement surgery Orthopedic surgery Intervention 335 270 0.57

11 Shoulder dystocia positioning Gynecology Diagnostic 342 366 0.49

12 Shoulder dystocia recurrence Gynecology Intervention 397 172 -0,01

13 Total knee replacement Orthopedic surgery Intervention 480 262 0.55

14 Vascular access General surgery Intervention 722 496 0.51

https://osf.io/vt3n4/
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at a recall level of 95%; WSS@95 reflects the amount of 
work saved by using active learning at the cost of failing 
to identify 5% of relevant publications. Note that humans 
typically misclassify about 10% [34]. Secondly, we com-
puted the metric Relevant Records Found (RRF), which 
represents the proportion of relevant publications that 
are found after screening a prespecified percentage of all 
publications. Here, we calculated RRF@10, which rep-
resents the percentage of relevant publications found 
after screening only 10% of all publications. Thirdly, we 
calculate the average time to discovery (ATD) [21] and 
the fraction of non-reviewed relevant publications dur-
ing the review (except the relevant publications in the 
initial dataset). The ATD is an indicator of the perfor-
mance throughout the entire screening process instead of 
performance at some arbitrary cutoff value. The ATD is 
computed by taking the average of the time to discovery 
(TD) of all relevant publications. The TD for a given rel-
evant publication i is computed as the fraction of publi-
cations needed to screen to detect i. We used this metric 
to identify hard-to-find papers potentially having a noisy 
label.

We also plotted recall curves to visualize model perfor-
mance throughout the entire simulation. Recall curves 
give information in two directions; they display the num-
ber of publications that need to be screened and the 
number of relevant publications.

All scripts to reproduce the simulations are available at 
https:// doi. org/ 10. 5281/ zenodo. 50313 90

Reflective dialogue
In order to better understand the differences in per-
formance across the different datasets, we organized a 
reflective dialogue. In a two 3.5-h session, seven research 
methodologists who initially labeled the datasets criti-
cally appraised the quality of the labeled datasets in light 
of the performance. Specifically, we wanted to know why 
some publications were found very easy and others more 
difficult to zoom in on the hard-to-find papers to identify 
possible noisy labels.

Results
Manual screening
The selected datasets encompass seven different medi-
cal fields, addressing intervention, diagnostic, and prog-
nostic types of questions. Table 1 details the datasets by 
guideline topic, medical specialty, type of question, num-
ber of abstracts screened, minute screening time, and 
Cohen’s Kappa (ĸ) for interrater agreement.

In our study, twenty-four clinicians independently 
screened a total of 5021 abstracts across all datasets. 
From these, they identified 339 potentially relevant publi-
cations, which required 3766 min of screening time. The 

mean ĸ for interrater agreement across all datasets was 
0.50, with individual values ranging from − 0.01 to 0.87, 
as detailed in Table 1 for each specific dataset.

Out of the 339 publications initially identified as rele-
vant by clinicians, the research methodologists excluded 
166 (49%) due to methodological concerns. A further 
45 (13.3%) were excluded after full-text review, leav-
ing 128 publications for final full-text inclusion. Table 1 
also reflects these figures, presenting a breakdown of the 
initial abstract screening results for each of the 14 pur-
posefully selected datasets, including the specific medical 
specialty and question type they pertain to.

Simulation
The simulation study results are summarized in Table 2, 
presenting a comprehensive analysis of datasets labeled 
by clinicians and research methodologists following full-
text selection.

It showed that the Work Saved over Sampling 
(WSS@95) was lowest for clinicians and ranged from 
32.31 to 97.99%, with a mean of 50.15% (SD = 17.74); 
followed by the research methodologist, it ranged from 
45.34 to 95.7%, with a mean of 69.24% (SD = 11.51); and 
simulating the full-text inclusions resulted in the highest 
WSS@95 that ranged from 61.41 to 96.68% (0.92), with a 
mean of 75.76% (SD = 12.16).

A similar pattern emerged for RRF@10 which, for clini-
cians, ranged from 28.10 to 100%, with a mean of 48.31% 
(SD = 23.32); for the research methodologist, it ranged 
from 25.00 to 100%, with a mean of 62.78% (SD = 21.20); 
and simulating full-text inclusions gave an RRF@10 that 
ranged from 20.00 to 100% (0.92), with a mean of 65.58% 
(SD = 23.25). ATD Ranged from screening 20 to 62 
abstracts.

Figure 1 presents recall curves for all simulations, and 
as can observed, the recall curves differ across datasets 
but always outperform randomly reading the records, 
which is the standard approach.

To illustrate these results in a more tangible context, 
we discuss one dataset in detail: Distal_radius_fractures_
approach. Out of the 195 records identified in the search, 
11 (5.64%) were indicated as relevant by the clinicians, 6 
(3.08%) by the guideline methodologist, and, ultimately, 
only 5 (2.56%) were included in the final protocol. Zoom-
ing in on WSS@95 for full-text inclusions, on average, 
after screening 43% of the records (n = 83), all records (5 
out of 5) would have been found. If one screened records 
in a random order, at this point, one would have found 
3 of the relevant records, and finding 5 of the relevant 
records would take, on average, 186 records. In other 
words, the time that can be saved using active learning 
expressed as the percentage of records that do not have to 
be screened is 61% (sd = 5.43), while still identifying 95% 

https://doi.org/10.5281/zenodo.5031390
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of the relevant records. The RRF@10 is 20% (sd = 11.18), 
meaning that after screening 10% of records, 20% of the 
relevant records have been identified.

Reflective dialogue
During these sessions, we reflected on the current pro-
gress of selecting relevant publications and how this 
affected some of the difficulties in active learning. The 
discussion during the reflective dialogue revealed that 
almost half (= 49%) of the selected publications by the 
clinicians did not meet the predefined inclusion cri-
teria, e.g., PICO criteria or study design, and were, 
therefore, later re-labeled as irrelevant by the research 
methodologists.

In this reflective dialogue, we also discussed the perfor-
mance of active learning in specific datasets. While for 
some active learning seemed to be hindered by incorrect 
inclusion by the clinicians, in other samples, active learn-
ing had difficulty due to the structure of the abstracts 
from studies other than RCTs. For example, the recall 
plots for the dataset Distal_radius_fractures_approach 
showed that the clinicians identified five papers as rel-
evant, which were later deemed irrelevant by the guide-
line methodologists. Methodologists mentioned how 
clinicians would often include studies for other reasons 
(interesting to read, not daring to exclude, or not know-
ing the exact inclusion criteria). This led to the mention 
of the “noisy labels” for inclusions that should not have 

been included in the first place. In the current man-
ual process, these are excluded by the methodologist, 
which takes extra time. For other datasets (i.e., Shoul-
der_replacement_surgery, Total_knee_replacement, and 
Shoulder_dystocia_positioning), active learning seems to 
have difficulty in finding systematic reviews and observa-
tional studies compared to randomized control trials. As 
discussed, this may be inherent to the way the abstracts 
are structured, e.g., RCTs often describe a strict compari-
son, while this may be less evident for systematic reviews 
and observational studies.

Discussion
The purpose of this practice-based study was to evalu-
ate the performance and feasibility of active learning to 
support the selection of relevant publications within 
the context of guideline development. Although ASRe-
view has been proven to be a valid tool for the selection 
of literature in numerous studies [15, 21, 25–33], none 
tested the performance on medical guidelines. We evalu-
ated the performance of active learning on labeled data-
sets from 14 clinical questions across the three different 
stages of the review process. The simulations show a 
considerable variation in the reduction of papers needed 
to be screened (13–98%). The variation is caused by the 
clearness and coherence of the abstracts, the specificity 
of the inclusion and exclusion criteria, and whether the 
information for full-text inclusion is actually present in 

Table 2 Results from simulation analyses for datasets labeled by clinicians, research methodologists, and full-text selection

a A simulation study with only 1 relevant paper cannot be executed because it needs at least 1 relevant record as training data and 1 relevant record as target paper to 
detect

SelectCl, Ex, FT = number of records included by the clinician, research methodologist, and full-text selection

WSS95Cl, Ex, FT = Work Saved over Sampling measured at a recall level of 95% for dataset labeled by the clinician, research methodologist, and full-text selection

RRF10Cl, Ex, FT = Relevant References Found after screening 10% of all publications (RRF10) for dataset labeled by the clinician, research methodologist, and full-text 
selection

# N SelectCl SelectEx SelectFT WSS95Cl WSS95Ex WSS95FT RRF10Cl RRF10Ex RRF10FT

1 195 11 6 5 32.31 (6.37) 57.70 (4.80) 61.41 (2.14) 29.09 (8.31) 30.00 (16.73) 20.00 (11.18)

2 277 8 4 4 43.33 (5.47) 59.40 (6.82) 62.31 (9.15) 28.57 (13.23) 25.00 (16.67) 33.33 (27.22)

3 640 20 14 12 55.76 (2.54) 73.55 (1.54) 77.40 (2.45) 43.16 (5.56) 52.75 (7.90) 62.88 (10.59)

4 311 34 20 11 73.15 (1.43) 72.98 (2.48) 78.12 (4.10) 66.22 (4.10) 71.32 (11.39) 73.64 (9.24)

5 56 18 9 8 48.89 (0.00) 70.12 (3.35) 70.28 (3.13) 28.10 (2.52) 45.83 (12.50) 41.07 (5.05)

6 188 18 12 7 40.33 (2.47) 45.34 (8.99) 86.76 (1.78) 47.06 (6.69) 40.15 (11.92) 78.57 (15.85)

7 435 109 22 6 32.70 (1.25) 66.10 (1.08) 64.19 (11.75) 25.63 (3.31) 62.55 (5.93) 46.67 (20.66)

8 428 45 45 45 66.42 (1.26) 66.34 (1.08) 66.92 (1.23) 60.45 (5.34) 61.26 (5.52) 60.86 (5.31)

9 342 3 1a 1a 97.99 (0.70) NA NA 100.00 (0) NA NA

10 397 6 4 4 74.78 (2.53) 93.78 (0.87) 93.13 (0.15) 63.33 (8.16) 100.00 (0) 100.00 (0)

11 218 6 5 4 79.55 (1.82) 82.80 (0.43) 79.95 (2.51) 46.67 (20.66) 40.00 (13.69) 33.33 (0)

12 335 5 5 4 61.30 (14.84) 61.05 (14.20) 96.68 (0.92) 65.00 (22.36) 60.00 (33.54) 100.00 (0)

13 480 35 16 9 65.09 (4.03) 73.12 (4.00) 95.76 (0.34) 78.74 (10.14) 89.17 (16.67) 100.00 (0)

14 772 21 10 8 34.84 (16.34) 95.72 (0.32) 96.27 (0.48) 85.95 (19.72) 100.00 (0) 100.00 (0)

Total 5074 339 173 128 50.15 (17.14) 69.24 (11.51) 75.76 (12.16) 48.31 (23.32) 62.78 (21.20) 65.58 (23.25)



Page 6 of 10Harmsen et al. Systematic Reviews          (2024) 13:177 

the abstract. On average, however, when active learning 
models were used, the WSS@95 was 50% for the screen-
ing done by clinicians. After additional assessment by 
an experienced research methodologist, the average 
WSS@95 increased to 69%, with a further increase to 
75% after final full-text inclusion. This means that the 
performance of active learning increases with more accu-
rate title-abstract labeling, which underlines the impor-
tance of strict inclusion and exclusion criteria.

The results of the reflective dialogue emphasize that 
in the current way of selection, inclusion and exclusion 
by clinicians in guideline development is not always as 
straightforward as in systematic reviews by researchers. 
Our results align with the hypothesis that active learn-
ing works under the strong assumption that given labels 
are correct [20]. During our reflective dialogue session, 
the notion of “noisy labels” was introduced for the ini-
tial screening process. This notion was confirmed in the 
low to moderate interrater reliability of the manual title-
abstract screening, with an average kappa of 0.5 in line 
with other recent findings [35]. Therefore, our main con-
clusion is that active learning models can speed up the 
process of literature screening within guideline devel-
opment but, at the same time, assume correct labels of 
inclusion and exclusion, as our data showed that perfor-
mance was dependent on the quality of the annotations.

Our next question, therefore, was to find the “noise” in 
the manual screening process. Some interesting themes 
emerged when looking at the differences between the 
selections made by the clinicians and the professional 
guideline developers. Guideline methodologists realized 
that clinicians often include publications based on the 
PICO criteria and out of personal interest or fear of leav-
ing out important data. Indeed, when re-examined, many 
articles did not fall within the PICO criteria or the pre-
defined criteria regarding methodological concerns (e.g., 
RCT vs. case–control studies or cohort studies). On aver-
age, there was a 49% drop in inclusion when the guideline 
methodologist re-evaluated the original inclusion made 
by the clinicians.

A question of interest for future study is when to trust 
that all relevant literature on the topic has been retrieved 
based on our results and others. In this study, we plot-
ted recall curves to visualize active learning performance 
and organized discussion meetings to reason why some 

publications were more difficult to find. Looking at the 
examples, this often happened when the search had fol-
lowed a slightly different process. In the current work-
flow, due to limited resources, pragmatic choices are 
being made not to include all individual studies when a 
recent systematic review is available. For active learning 
models, it takes time to “learn” this adapted (non-logical) 
strategy. For instance, plateaus occur in some of the recall 
plots, and after a series of irrelevant records have been 
identified, a new relevant record was found. Interestingly, 
when time is saved by working with active learning tools, 
these pragmatic choices might not be necessary anymore 
and may lead to a much larger and more complete set of 
inclusions than the manual workflow.

Strengths and weaknesses
While an obvious weakness concerns the number of 
datasets included, in this study, we did not cover all types 
of clinical questions, and our findings are mainly based 
on intervention types of questions. On the other hand, 
a strength of this study is that we evaluated the daily 
practice of guideline development using real-world data 
from previously developed guidelines. While studies are 
reporting on tools implementing active learning in sys-
tematic reviews, there is little evidence of implementing 
such tools in daily practice [36–38]. Our “real world” data 
provided us with new challenges not seen before because 
it is frequently tested in research settings without going 
back to the initial screeners, leaving out more pragmatic 
and human-interest choices that influence literature 
screening.

This type of practice-based study has shown potential 
ways to use and improve current practice. In our sam-
ple, active learning detected the most relevant studies 
with a significant reduction in the number of abstracts 
that needed to be screened. The system performed better 
when the inclusion and exclusion criteria were adhered 
to more strictly. The findings brought us to look at the 
workflow needing more attention to guide the clinicians 
in the systematic selection of papers. This is beneficial 
not only when using software like ASReview, where the 
principle of “quality in, quality  out” seems to apply, but 
also when using the manual selection of papers. After 
abstract screening, almost half of the inclusions were 
incorrect, which is higher than the error rates reported 

Fig. 1 Recall plots of the simulated datasets. The first row indicates the number of relevant records found for each simulation run as displayed 
as a function of the number of records screened for each of the three levels (clinician, guideline methodologist, final decision). The vertical line 
indicates when 95% of the relevant records have been found. The Y-axis presents the number of relevant papers minus one paper selected 
for training data. Note that the simulation for the dataset Shoulder_replacement_diagnostic shows no recall lines because only one relevant paper 
was included, and at least two relevant records are needed for a simulation study

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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Fig. 1 continued
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in systematic reviews, with a mean error rate of nearly 
11% over 25 systematic reviews [34]. Methods to improve 
literature selection have been described [39, 40] and 
include recommendations to include reflection and 
group discussion, resulting in a more iterative process, 
practical tips like taking regular breaks and coding in 
small batches at a time to prevent fatigue, but also set-
ting up unambiguous inclusion criteria and adjusting the 
codebook during the process if needed. While the inclu-
sion of two independent reviewers is often assumed to 
be the best way to reduce bias, these authors also advise 
regularly assessing interrater reliability as part of reflec-
tive and learning practice.

We also defined some remaining questions for future 
research. As described above, in guideline development, 
research questions do not always yield prior inclusion 
papers, while the performance of active learning partially 
depends on at least one relevant starting paper to learn 
from. A possible solution that needs to be explored might 
be to start with a dummy abstract containing all relevant 
elements from the PICO. At the same time, we need 
more samples of research questions in clinical guidelines 
to further evaluate the use of AI tools in different ques-
tions and contexts. In this study, we evaluated a limited 
set of retrospective data using one active learning algo-
rithm, and future studies could explore more datasets, 
different active learning algorithms, or different tools in 
different phases of the process of guideline development 
to evaluate further the human–machine interaction and 
how this affects the process of guideline development.

Conclusions
This study shows a 50–75% reduction in abstracts that 
needed to be screened to find and select all relevant lit-
erature for inclusion in medical guidelines when using 
active learning models. At the same time, this study also 
shows the importance of the quality of the human input 
as it directly relates to the performance of active machine 
learning. The next step would be to evaluate how to apply 
active learning in the workflow of guideline develop-
ment, how to improve human input, and what it means 
for both the timeframe to develop new recommendations 
and the transparency and quality of these evidence-based 
recommendations.
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