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Abstract 

Objective Acute ischemic stroke (AIS) is a significant health burden in China, affecting a sizable portion of the popu‑
lation. Conventional pharmacological treatments frequently fall short of desirable outcomes. Therefore, exploring 
alternative therapies is crucial. Remote ischemic postconditioning (RIPostC) is a noninvasive and cost‑effective 
adjunctive therapy. This study aimed to investigate the efficacy and safety of RIPostC as an adjunctive therapy for AIS 
to inform clinical practice.

Methods A comprehensive search was conducted across the PubMed, Embase, Web of Science, China National 
Knowledge Infrastructure (CNKI), WanFang, Weipu (VIP), and China Biology Medicine disc (CBM) databases up to Octo‑
ber 2023. All included studies underwent bias risk assessment using the Cochrane risk‑of‑bias assessment tool. The 
primary outcome measure was the National Institute of Health Stroke Scale (NIHSS), with secondary outcomes includ‑
ing the Barthel index (BI), D‑dimer, C‑reactive protein (CRP), fibrinogen (FIB), brain‑derived neurotrophic factor (BDNF), 
modified Rankin scale (mRS), interleukin‑6 (IL‑6), and tumor necrosis factor‑α (TNF‑α) levels. The data were analyzed 
using fixed‑effects and random‑effects models in Review Manager, with mean differences (MDs) and 95% confidence 
intervals (CIs) calculated for each outcome. The grading of recommendations, assessment, development, and evalua‑
tions (GRADE) approach was used to evaluate the level of evidence for each outcome measure.

Results This meta‑analysis included 38 studies, encompassing 4334 patients. Compared with the control group, 
the RIPostC group had significantly lower NIHSS scores, serum CRP, D‑dimer, IL‑6, TNF‑α, and FIB levels, and increased 
BDNF levels. Moreover, it improved the patient’s BI and mRS scores. According to the GRADE approach, the quality 
of evidence for mRS was deemed “moderate,” while the NIHSS, BI, and CRP were rated as “low” quality. IL‑6, TNF‑α, FIB, 
D‑dimer, and BDNF received “very low” quality ratings.

Conclusion The findings suggest that RIPostC activates endogenous protective mechanisms, providing benefits 
to patients with AIS.
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Introduction
Stroke is a significant neurological disorder charac-
terized by high incidences of disability and mortality, 
ranking as the fifth leading cause of death in the United 
States and the primary cause in China [1–3]. Ischemic 
stroke, constituting approximately 70% of stroke cases 
in China [4], has a complex pathogenesis. Pathologies 
such as atherosclerosis and thrombosis in cerebral 
arteries may induce vascular spasms, stenosis, or occlu-
sion, resulting in softening and necrosis of brain tissue 
and neurological deficits [5, 6]. Although intravenous 
thrombolysis is the primary treatment for acute cere-
bral infarction, its efficacy is limited by a narrow thera-
peutic window and contraindications associated with 
thrombolytic medications. Consequently, a consider-
able number of patients experience fatal outcomes or 
severe disabilities, significantly impacting their quality 
of life [4, 7]. Therefore, identifying effective strategies 
to counteract pathological alterations at the ischemic 
site and enhance recovery and quality of life is impera-
tive. With the limited availability of exogenous methods 
to promote recovery from cerebral ischemia, exploring 
endogenous mechanisms for rehabilitation has become 
a focal point of interest.

Remote ischemic postconditioning (RIPostC) is an 
innovative and straightforward approach for safeguard-
ing ischemic brain tissue. Its principle involves induc-
ing brief, nonfatal ischemic episodes in noncritical 
organs following a life-threatening ischemic event in 
vital organs. This process triggers innate ischemic toler-
ance mechanisms, protecting the ischemic and damaged 
brain tissue [8]. RIPostC activates these endogenous pro-
tective mechanisms by subjecting specific organs or tis-
sues to recurrent episodes of ischemia and reperfusion, 
which are insufficient to cause irreversible organ or tissue 
damage. However, these transient episodes stimulate the 
body’s internal protective response through RIPostC [9]. 
The precise mechanisms through which RIPostC exerts 
its protective effects are poorly understood; they are con-
ventionally divided into fluid and immune-inflammatory 
regulatory mechanisms, with some interactions between 
them.

Regarding humoral regulation mechanisms, emerg-
ing research suggests that ischemic events prompt the 
body or tissues to produce anti-ischemic compounds 
or soluble substances, such as nitric oxide, adenosine, 
bradykinin, and vascular endothelial growth factor. These 
substances circulate in the bloodstream upon reperfu-
sion, delivering bodily protective benefits. Moreover, 
RIPostC can stimulate local vascular endothelial cells to 
release cell vesicles containing proteins or microRNAs 
(miRNAs), which travel to the brain and modulate cellu-
lar activity, exerting a neuroprotective effect [10, 11].

Concerning immune-inflammatory regulatory mecha-
nisms, both preclinical and clinical studies have indicated 
that RIPostC can inhibit proinflammatory responses, 
promote the transcription of anti-inflammatory and 
antiapoptotic genes, alleviate immune-inflammatory 
responses, and regulate peripheral immune cells, such as 
CD3+CD8+ T cells, B cells, CD3+/CD161a+ NKT cells, 
and anti-inflammatory CD43+/CD172a+ monocytes. 
Furthermore, it can adjust TNF-α and IL-6 levels to pro-
vide neuroprotection [12–14].

The primary evidence supporting the neuroprotec-
tive effects of RIPostC comes from animal studies, 
highlighting the involvement of various endogenous 
factors, including regulatory T cells, heat shock protein 
70 (Hsp70), miRNAs, neuronal nitric oxide synthase, 
and brain-derived neurotrophic factor (BDNF) [15–20]. 
Clinical trials further support the potential of RIPostC to 
enhance recovery in patients with stroke, as evidenced by 
improved NIHSS scores, reduced high-sensitivity (hs)-
CRP levels, diminished brain tissue infarct volume, and 
enhanced cognitive function post-stroke [21–25]. Theo-
retically, remote ischemic conditioning holds promise 
for facilitating disease recovery. However, the outcomes 
of a high-quality randomized controlled trial suggest that 
remote ischemic preconditioning may not significantly 
influence disease progression or recovery following acute 
ischemic stroke (AIS) [26]. Four systematic reviews and 
meta-analyses concerning RIPostC’s use in treating AIS 
have been examined; two focused on animal studies, 
potentially offering significant insights for researchers. 
The remaining two analyses pertained to clinical trials. 
However, these studies have relatively narrow outcome 
indicators, limiting a comprehensive understanding of 
RIPostC’s endogenous protective mechanisms. Con-
sequently, this study was initiated to comprehensively 
assess the potential benefits of RIPostC in rehabilitat-
ing patients who have experienced AIS, incorporating a 
broader array of original research and outcome measures.

Methods
Systematic review protocol and registration
This review followed the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (PRISMA) guide-
lines [27] and is registered with the International Pro-
spective Register of Systematic Reviews (PROSPERO) 
(CRD42021261145).

Search strategy
A comprehensive search was implemented in PubMed, 
Embase, Web of Science, China National Knowledge 
Infrastructure (CNKI), WanFang, Weipu (VIP), and 
China Biology Medicine disc (CBM) databases, extend-
ing the search timeframe up to April 2024. Keywords 
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used in the search encompassed stroke, ischemic 
stroke, cerebral infarction, acute ischemic stroke, 
RIPostC, remote ischemic postconditioning, and ran-
domized controlled trials, among others. The search 
strategy combined electronic database searches with 
manual efforts to ensure a thorough literature collec-
tion. The Additional file  1 details the search strategies 
(see Additional file 1).

Eligibility criteria
Inclusion criteria were as follows:

1) Diagnosis of AIS with significant symptoms, includ-
ing unilateral facial or limb numbness, facial asym-
metry, blurred vision, impaired visual rotation, bal-
ance issues, altered consciousness, convulsions, 
speech difficulties, hemiplegia, hemianopia, and 
hemisensory disorders

2) 2) Head CT or MRI confirming the absence of cer-
ebral hemorrhage

3) Patients aged between 18 and 90 years
4) Inclusion of the National Institute of Health Stroke 

Scale (NIHSS) among outcome indicators
5) Approval from the ethics committee of the conduct-

ing hospital
6) Utilization of a randomized controlled trial design
7) Comparison between a control group receiving intra-

venous thrombolysis or conventional drug therapy 
and an experimental group undergoing RIPostC 
alongside intravenous thrombolysis or conventional 
drug therapy

8) Research studies conducted in China

Exclusion criteria encompassed the following:

1) Duplicate entries, animal studies, review articles, 
conference abstracts, and case reports

2) Studies not aligning with the diagnosis of acute 
ischemic stroke, including transient ischemic attacks

3) Studies with incomplete outcome data that could not 
be extracted

4) Studies with intervention times and outcome indi-
cators unsuitable for subgroup analysis with other 
studies

5) Inaccessibility of full texts
6) Outcome indicators not presented as mean ± stand-

ard deviation
7) Use of additional intervention measures alongside 

RIPostC and drug therapy
8) Studies conducted outside of China.
9) Non-randomized controlled trials (RCT)

Study selection and data extraction
Two researchers (M. Y. and J. W.) independently screened 
records for eligibility. After removing 125 duplicate 
records from the initial 457 retrieved records, 55 reviews 
and 68 animal experiments were excluded based on title 
and abstract. Full-text retrievals were attempted for the 
remaining records; however, nine were inaccessible. Full 
texts were reviewed for the remaining records, excluding 
2 non-randomized studies, 1 non-RCT study, 132 stud-
ies not meeting the inclusion and exclusion criteria, and 
25 studies with continuous variables not presented as 
mean ± standard deviation. Two records were excluded 
due to the inability to merge and analyze with any study 
at the intervention time point; the remaining 38 records 
met study requirements and were included. Disagree-
ments were resolved by consulting a third reviewer (Q. 
C.), although the two researchers reached a unanimous 
agreement. Data extraction included first author, pub-
lication year, study design, participant demographics, 
interventions, control actions, duration of intervention, 
outcome measures, and adverse effects, with continu-
ous data recorded as mean ± standard deviation in Excel 
sheets. The study screening methodology is illustrated 
in Fig. 1. The data extraction process is provided in the 
Additional files 2–5 (see Additional files 2–5).

Statistical analysis
Statistical analyses were performed using Review Man-
ager 5.3 (provided by the Cochrane Collaboration, 
Copenhagen, Denmark). The impact of RIPostC on con-
tinuous outcomes was assessed by calculating mean dif-
ferences (MDs) with 95% confidence intervals (CI). The 
meta-analyses employed Mantel–Haenszel fixed-effects 
models in instances devoid of significant statistical het-
erogeneity among the studies. A significance threshold 
of 5% was maintained throughout the research. Hetero-
geneity among the studies was assessed using Cochran’s 
Q test and I2 methods. Acceptable homogeneity was 
defined as P > 0.1 and I2 < 50%, warranting a fixed-effects 
model; conversely, heterogeneity was assumed, prompt-
ing analysis via a random-effects model. The source of 
heterogeneity was explored through sensitivity analysis 
and subgroup examination.

Target outcome indicators
The primary outcome measure was the National Insti-
tute of Health Stroke Scale (NIHSS), with additional out-
come measures including the Barthel index (BI), D-dimer 
(D-D), C-reactive protein (CRP), fibrinogen (FIB), BDNF, 
modified Rankin scale (mRS), interleukin-6 (IL-6), and 
tumor necrosis factor-α (TNF-α).
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Results
Study collection and characteristics
A total of 457 studies were retrieved, and after follow-
ing the screening process, 38 randomized controlled tri-
als [4, 28–64] conducted in China were selected for this 
meta-analysis. These studies, published between 2012 
and 2023, involved 4324 participants, with 2166 in the 
control group and 2158 in the experimental group. All 
included studies were categorized based on the duration 
of RIPostC implementation to enhance the reliability of 
our data analysis. This categorization included a 3-day 
group with 3 studies [59–61], a 7-day group comprising 9 
studies [29, 35–37, 41, 42, 47, 58, 64], a 10-day group with 
3 studies [44–46], a 14-day group consisting of 15 stud-
ies [4, 28, 31, 40, 48–53, 55–57, 60, 61], a 3-month group 
with 2 studies [30, 38], and a 6-month group encompass-
ing 6 studies [32–34, 39, 43, 54]. Detailed information 
and characteristics of the studies are listed in Tables  1 
and 2.

Outcome measurements
The National Institutes of Health Stroke Scale (NIHSS)
All included studies reported NIHSS scores. For a thor-
ough meta-analysis, these studies were categorized based 
on the NIHSS measurement timelines: 3-day, 7-day, 
10-day, 14-day, and 6-month groups. A higher NIHSS 
score indicates more severe nerve damage in the patient, 

while a lower score indicates better recovery of damaged 
nerves.

3‑day group
This group comprised 710 participants [59–61], with 
355 each in the experimental and control groups. The 
outcomes at 14-day post-treatment were collectively 
reported; hence, the analysis focused on these results. 
The meta-analysis showed that RIPostC significantly 
lowered NIHSS scores compared to the control group, 
employing a random-effects model (MD: −2.70; 95% CI: 
−4.95, −0.81; P = 0.005). However, substantial heteroge-
neity across these trials was observed (χ2 = 123.94; I2 = 
98%; P < 0.00001; Fig. 2).

7‑day group
This cohort included 349 participants in the experimen-
tal group and 341 in the control group, with outcomes 
reported on both the 7th day (across 6 studies [29, 36, 
37, 41, 42, 47]) and the 14th day (across four studies [29, 
35, 58, 64]) of treatment. The meta-analysis indicated a 
significant reduction in NIHSS scores by RIPostC on the 
7th day compared to the control group, as determined 
through a random-effects model (MD: −2.04; 95% CI: 
−3.64, −0.45; P = 0.01; Fig. 3A). Significant heterogene-
ity was observed among the included trials. A subsequent 
sensitivity analysis revealed that the study by Zhou et al. 
[47] significantly influenced this heterogeneity. Upon 

Fig. 1 Flowchart illustrating the study screening process
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Table 1 Basic characteristics of the included studies

Study Sample size Age (years) Male/female Population Interventions

E C E / C E C E / C

Chen et al. [28] 36 36 61.55 ± 8.53/61.78 ± 8.63 23/13 22/14 Acute ischemic stroke 
within 24 h

RIPostC + routine treat‑
ment/routine treatment

Fan et al. [29] 32 32 61.33 ± 9.21/62.15 ± 8.32 19/13 17/15 Acute ischemic stroke 
within 6 h

RIPostC + thrombolysis/
thrombolysis

Huang et al. [30] 80 80 61.8 ± 9.9/57.7 ± 9.6 45/35 41/39 Acute ischemic stroke 
24–72 h

RIPostC + routine treat‑
ment/routine treatment

Yao et al. [31] 75 75 55.8 ± 8.63/54.89 ± 8.39 39/36 41/43 Acute ischemic stroke RIPostC + routine treat‑
ment/routine treatment

Liu et al. [32] 38 38 54.2 ± 4.2/54.5 ± 4.1 23/15 25/13 Acute ischemic stroke RIPostC + routine treat‑
ment/routine treatment

Jiang et al. [33] 41 41 64.82 ± 8.55/65.31 ± 7.36 22/19 25/16 Acute ischemic stroke 
within 48 h

RIPostC + routine treat‑
ment/routine treatment

Zhou et al. [34] 144 127 60.1 ± 19.3/57.9 ± 20.1 97/47 90/37 Acute ischemic stroke 
within 48 h

RIPostC + routine treat‑
ment/routine treatment

Kuang et al. [35] 31 30 Not report Not report Acute ischemic stroke RIPostC + routine treat‑
ment/routine treatment

Fang et al. [36] 28 30 63.68 ± 8.61/61.60 ± 11.95 16/12 17/13 Acute ischemic stroke 
24–72 h

RIPostC + routine treat‑
ment/routine treatment

Mai et al. [37] 30 30 63.7 ± 13.5/68.7 ± 11.5 16/14 20/10 Acute ischemic stroke 
within 72 h

RIPostC + routine treat‑
ment/routine treatment

Zhang et al. [38] 60 60 65.61 ± 5.46/65.46 ± 5.84 35/25 33/27 Acute ischemic stroke 
within 24 h

RIPostC + routine treat‑
ment/routine treatment

Liu et al. [39] 52 52 60.1 ± 4.8/60.7 ± 5.0 30/22 32/20 Acute ischemic stroke 
within 48 h

RIPostC + routine treat‑
ment/routine treatment

Li et al. [40] 119 120 63.15 ± 10.12/64.64 ± 9.63 75/44 85/35 Acute ischemic stroke 
within 72 h

RIPostC + routine treat‑
ment/routine treatment

Li et al. [41] 23 27 59.8 ± 8.96/61.34 ± 9.64 13/10 15/12 Acute ischemic stroke 
within 48 h

RIPostC + routine treat‑
ment/routine treatment

Chen et al. [42] 15 15 61.53 ± 9.70/59.13 ± 12.51 9/6 8/7 Acute ischemic stroke RIPostC + thrombolysis/
thrombolysis

Lin et al. [43] 40 40 65.37 ± 5.16/67.25 ± 6.32 22/18 24/16 Acute ischemic stroke 
within 48 h

RIPostC + routine treat‑
ment/routine treatment

Wu et al. [44] 50 50 65.37 ± 5.16/67.25 ± 6.32 23/27 24/26 Acute ischemic stroke 
within 24 h

RIPostC + routine treat‑
ment/routine treatment

Liu et al. [45] 29 29 67.52 ± 7.71/62.72 ± 11.09 17/12 16/13 Acute ischemic stroke 
within 24 h

RIPostC + routine treat‑
ment/routine treatment

Chen et al. [46] 50 50 60.32 ± 10.53/60.43 ± 11.22 27/23 22/28 Acute ischemic stroke 
within 72 h

RIPostC + routine treat‑
ment/routine treatment

Zhou et al. [47] 50 50 61.86 ± 8.27/62.54 ± 8.49 27/23 28/22 Acute ischemic stroke 
within 72 h

RIPostC + routine treat‑
ment/routine treatment

Li et al. [48] 113 114 65.60 ± 5.20/66.20 ± 6.40 72/41 82/32 Acute ischemic stroke 
within 72 h

RIPostC + routine treat‑
ment/routine treatment

Dai et al. [49] 70 70 64.16 ± 8.91/63.77 ± 7.71 38/32 40/30 Acute ischemic stroke 
within 24 h

RIPostC + routine treat‑
ment/routine treatment

Wu et al. [50] 70 70 64.16 ± 8.91/63.77 ± 7.71 38/32 40/30 Acute ischemic stroke 
within 24 h

RIPostC + routine treat‑
ment/routine treatment

Wang et al. [51] 70 70 64.16 ± 8.91/63.77 ± 7.71 38/32 40/30 Acute ischemic stroke 
within 24 h

RIPostC + routine treat‑
ment/routine treatment

Qu et al. [52] 45 44 63.51 ± 9.34/61.80 ± 9.54 24/21 22/22 Acute ischemic stroke 6 
h‑72 h

RIPostC + routine treat‑
ment/routine treatment

Sun et al. [53] 47 47 55.18 ± 5.65/54.87 ± 5.37 30/17 28/19 Acute ischemic stroke 
within 4.5 h

RIPostC + thrombolysis/
thrombolysis

Feng et al. [54] 75 55 67.2 ± 3.1/67.0 ± 3.3 49/26 35/20 Acute ischemic stroke 
within 48 h

RIPostC + routine treat‑
ment/routine treatment
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its exclusion, heterogeneity was no longer present (MD: 
−1.33; 95% CI: −1.96, −0.71; P < 0.0001; Fig. 3B). Simi-
larly, by the 14th-day post-treatment, RIPostC was found 
to reduce the NIHSS scores compared to the control 
group (MD: −0.76; 95% CI: −1.83, 0.31; P = 0.16; Fig. 3C).

10‑day group
This group comprised 100 participants in the experi-
mental group and 100 in the control group, with results 
reported on the 10th day of treatment [44, 46]. Compared 
to the control group, the experimental group exhibited 
a significant reduction in NIHSS scores, as depicted in 
Fig.  4, using a fixed-effects model (MD: −2.56; 95% CI: 
−3.02, −2.10; P < 0.00001).

14‑day group
This group comprised 15 studies, with 938 participants 
in the experimental group and 937 in the control group. 
Twelve studies [4, 28, 31, 39, 48, 49, 52, 55–57, 60, 61] 
reported results on day 14 using a random-effects model 
(MD: −2.23; 95% CI: −3.20, −1.25; P < 0.00001; Fig. 5A). 
Three studies [40, 48, 52] reported results 1-month post-
treatment using a fixed-effects model (MD: −1.40; 95% 
CI: −1.81, −0.99; P < 0.00001; Fig. 5B). Furthermore, five 
studies [40, 48, 49, 52, 53] reported 3-month posttreat-
ment outcomes via a fixed-effects model (MD: −1.56; 
95% CI: −1.92, −1.20; P < 0.00001; Fig.  5C). Across all 

three datasets, RIPostC significantly reduced the NIHSS 
scores compared to the control group.

6‑month group
This group comprised 6 studies with 743 participants, 
reporting results at 1-month and 6-month post-treat-
ment. At the 1-month mark [34, 43, 54], a meta-anal-
ysis using a random-effects model indicated that the 
RIPostC group outperformed the control group in reduc-
ing NIHSS scores (MD: −1.39; 95% CI: −2.27, −0.52; P 
< 0.002; Fig.  6A). In the 6th month [32–34, 39, 43, 54], 
NIHSS scores in the RIPostC group were significantly 
lower than those in the control group, as determined by a 
random-effects model (MD: −2.78; 95% CI: −4.05, −1.50; 
P < 0.0001; Fig. 6B).

Barthel index (BI)
For the BI, only data from the 7-day and 14-day groups 
were suitable for meta-analysis. The 7-day group pro-
vided outcomes on the 7th and 14th days of treatment. 
However, the 14-day group reported results on the 14th-, 
30th-, and 90th-day post-treatment. According to Fig. 7, 
RIPostC significantly enhanced the patients’ BI scores 
compared to the control group. The BI measures the 
patient’s ability to engage in daily activities, with a higher 
score indicating more substantial independence in activi-
ties, reflecting the patient’s recovery situation.

Table 1 (continued)

Study Sample size Age (years) Male/female Population Interventions

E C E / C E C E / C

Guo et al. [55] 48 48 68.04 ± 4.61/67.89 ± 4.55 26/22 25/23 Acute ischemic stroke 
within 4 h

RIPostC + thrombolysis/
thrombolysis

Zhao et al. [56] 59 57 64.16 ± 8.91/63.77 ± 7.71 37/22 35/24 Acute ischemic stroke 
within 72 h

RIPostC + routine treat‑
ment/routine treatment

Peng et al. [4] 20 20 Not report Not report Acute ischemic stroke 
within 72 h

RIPostC + routine treat‑
ment/routine treatment

Meng et al. [57] 69 69 Not report Not report Acute ischemic stroke 
6–72 h

RIPostC + routine treat‑
ment/routine treatment

Shi et al. [58] 74 62 60.5 ± 3.8/61.5 ± 4.5 47/27 45/17 Acute ischemic stroke 
within 72 h

RIPostC + routine treat‑
ment/routine treatment

Wang et al. [59] 145 145 Not report Not report Acute ischemic stroke 
within 48 h

RIPostC + routine treat‑
ment/routine treatment

Tian et al. [60] 18 18 57.5 ± 2.6/57.7 ± 2.7 12/6 11/7 Acute ischemic stroke RIPostC + routine treat‑
ment/routine treatment

Wang et al. [61] 9 9 Not report 5/4 4/5 Acute ischemic stroke RIPostC + routine treat‑
ment/routine treatment

Wu et al. [62] 60 60 Not report Not report Acute ischemic stroke 
within 7 days

RIPostC + routine treat‑
ment/routine treatment

Zhang et al. [63] 150 136 55.8 ± 8.63/54.89 ± 8.39 84/66 69/67 Acute ischemic stroke 
within 72 h

RIPostC + routine treat‑
ment/routine treatment

Zhao et al. [64] 66 65 59.67 ± 11.54/58.58 ± 10.97 31/35 29/36 Acute ischemic stroke 
within 72 h

RIPostC + routine treat‑
ment/routine treatment
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Table 2 Specific information about the included randomized controlled trials

Study RIPostC design Treatment methods for the control groups

Cycles Ischemia time/
reperfusion time

Operate
pressure

Operated limb Treatment
duration

Chen et al. [28] 5 5 min/5 min 200–220 mmHg Upper arm 14 days Oxygen inhalation, aspirin, edaravone, TCM: Xue‑
saitong, adjusting blood sugar, blood pressure, 
and blood lipids

Fan et al. [29] 3 5 min/5 min 200 mmHg Upper arm 7 days Intraveneuze trombolyse, anticoagulant, antiplatelet, 
blood lipid regulation, elimination of oxygen free 
radicals, brain protection

Huang et al. [30] 5 5 min/5 min 200 mmHg Upper arm 90 days Antiplatelet aggregation, lowering blood lipids, stabi‑
lizing plaques, stabilizing blood pressure, improving 
circulation, and dilating blood vessels

Yao et al. [31] 5 5 min/5 min 180–200 mmHg Upper arm 7–14 days Based on guidelines, conventional antiplatelet and oral 
statin therapy are administered

Liu et al. [32] 5 5 min/5 min 190 mmHg Upper arm 180 days Treatment for improving coagulation function, lower‑
ing blood lipids, lowering blood pressure, nourishing 
nerves, etc.

Jiang et al. [33] 10 5 min/5 min 200 mmHg Upper arm 180 days Conventional treatment medication to control risk 
factors such as blood sugar, blood lipids, and hyper‑
tension at normal levels

Zhou et al. [34] 5 5 min/5 min 180–200 mmHg Upper arm 28 days Purely using medication for treatment, mainly for anti‑
platelet aggregation, promoting blood circulation 
and removing blood stasis, etc.

Kuang et al. [35] 3 5 min/5 min 200 mmHg Upper arm 7 days Antiplatelet aggregation, stabilizing plaques, promot‑
ing blood circulation and removing blood stasis, 
clearing oxygen‑free radicals

Fang et al. [36] 3 5 min/5 min Not report Upper arm 7 days Antiplatelet aggregation and lipid‑lowering stabiliza‑
tion of plaques, clearing free radicals, improving circu‑
lation, controlling blood pressure and blood sugar, etc.

Mai et al. [37] 4 5 min/5 min Not report Upper arm 7 days Antiplatelet aggregation, lipid‑lowering stabiliza‑
tion of plaques, improvement of circulation, oxygen 
uptake, etc.

Zhang et al. [38] 10 5 min/5 min 27 kPa Upper arm 90 days Routine interventions such as basic medication for cer‑
ebral infarction, fluid supplementation, maintenance 
of acid‑base and electrolyte balance, and low‑choles‑
terol diet

Liu et al. [39] 5 5 min/5 min 180–200 mmHg Upper arm 180 days Conventional drug therapy, including antiplatelet 
aggregation, blood circulation, and stasis elimination

Li et al. [40] 5 5 min/5 min 200 mmHg Upper arm 14 days Aspirin, atorvastatin, edaravone, butylphthalide, etc.

Li et al. [41] 4 5 min/5 min 200 mmHg Upper arm 7 days Routine treatment for cerebral infarction and left 
upper limb 60‑mmHg compression

Chen et al. [42] 3 5 min/5 min 200 mmHg Upper arm 7 days Intraveneuze trombolyse

Lin et al. [43] 10 5 min/5 min 200 mmHg Upper arm 180 days Refer to the 2018 Chinese Guidelines for the Diagnosis 
and Treatment of Acute Ischemic Stroke to receive 
the best secondary preventive treatment

Wu et al. [44] 5 5 min/5 min 180 mmHg Upper arm 10 days Antiplatelet aggregation, lipid‑lowering and stabilizing 
plaques, clearing free radicals, promoting blood circu‑
lation and removing blood stasis, nourishing nerves, 
lowering blood pressure, lowering blood sugar, etc.

Liu et al. [45] 5 5 min/5 min 180 mmHg Upper arm 10 days Routine neurology treatment

Chen et al. [46] 5 5 min/5 min 180 mmHg Upper arm 10 days TCM: Xuesaitong, Olaxitan, antiplatelet, agglomeration, 
basic disease treatment

Zhou et al. [47] 5 5 min/5 min 200 mmHg Upper arm 7 days Atorvastatin, clopidogrel, aspirin

Li et al. [48] 5 5 min/5 min 200 mmHg Upper arm 14 days All patients were treated symptomatically accord‑
ing to the 2018 Chinese Guidelines for the Diagnosis 
and Treatment of Acute Ischemic Stroke

Dai et al. [49] 5 5 min/5 min 200 mmHg Upper arm 14 days Improve cerebral blood supply, nourish nerves, resist 
platelet aggregation, lower intracranial pressure, lower 
lipid levels, and stabilize plaques
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Table 2 (continued)

Study RIPostC design Treatment methods for the control groups

Cycles Ischemia time/
reperfusion time

Operate
pressure

Operated limb Treatment
duration

Wu et al. [50] 5 5 min/5 min 200 mmHg Upper arm 14 days Improving cerebral circulation, nourishing brain cells, 
lowering intracranial pressure, antiplatelet aggrega‑
tion, lipid lowering, and stabilizing plaques

Wang et al. [51] 5 5 min/5 min 200 mmHg Upper arm 14 days According to the 2018 Chinese Guidelines 
for the Diagnosis and Treatment of Acute Ischemic 
Stroke, basic medication with conventional standards 
is administered

Qu et al. [52] 5 5 min/5 min Not report Upper arm 14 days Standard treatment plan for acute cerebral infarction

Sun et al. [53] 4 3 min/3 min 200 mmHg Upper arm 14 days Intravenous thrombolysis, aspirin, mannitol

Feng et al. [54] 5 5 min/10 min 180–200 mmHg Upper arm 180 days Antiplatelet, anticoagulant, antihypertensive and lipid 
lowering, nutritional nerve therapy

Guo et al. [55] 3–4 5 min/5 min 200 mmHg Upper arm 14 days Vascular dilation, oxygen inhalation, intravenous 
thrombolysis

Zhao et al. [56] 5 5 min/5 min 200 mmHg Upper arm 14 days Aspirin, atorvastatin, edaravone, and butylphthalide

Peng et al. [4] 3 5 min/10 min Not report Thigh 14 days Administer appropriate dehydrating agents according 
to the condition, control blood pressure and blood 
sugar, use drugs that promote blood circulation, 
remove blood stasis, and unblock collaterals, as well 
as anticoagulants
Antiplatelet agents and symptomatic support, etc.

Meng et al. [57] 3 5 min/5 min 200 mmHg Upper arm 3 days Inhibiting platelet aggregation, clearing free radicals, 
protecting brain cells, improving cerebral circulation, 
lowering intracranial pressure, controlling blood pres‑
sure, blood glucose, and lipids, as well as preventing 
and treating various complications such as electrolyte 
disorders and infections, to support treatment

Shi et al. [58] 4 5 min/5 min Not report Upper arm 7 days Aspirin, atorvastatin, clearing free radicals, control‑
ling blood sugar, blood pressure, nourishing nerves, 
maintaining water electrolyte balance, etc.

Wang et al. [59] 3 5 min/5 min 200mmHg Upper arm 3 days Clearing free radicals, promoting blood circulation 
and removing blood stasis, improving circulation 
and protecting the brain, etc.

Tian et al. [60] 3 5 min/not report 200 mmHg Upper arm 14 days Inhibiting platelet aggregation, improving cerebral 
circulation, lowering intracranial pressure, lowering 
blood sugar, etc.

Wang et al. [61] 3 5 min/5 min 200 mmHg Upper arm 14 days Routine neurological treatment for cerebral infarction

Wu et al. [62] 3 5 min/5 min 200 mmHg Upper arm 3 days Routine neurological treatment for cerebral infarction

Zhang et al. [63] 3 5 min/5 min 200 mmHg Upper arm 3 days Antiplatelet aggregation, elimination of free radicals, 
brain protection, improvement of circulation, etc.

Zhao et al. [64] 10 5 min/5 min 200 mmHg Upper arm 7 days Aspirin, atorvastatin, edaravone, TCM: Xuesaitong, 
fluid replacement, correction of electrolyte disorders, 
and symptomatic supportive treatment

TCM, traditional Chinese medicine; RT, routine treatment; 1 mmHg = 0.133 kPa

Fig. 2 Forest plot of NIHSS in 3‑day group
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In the 7-day group on the 7th day [29, 37, 42], the anal-
ysis showed a significant improvement (MD: 11.01; 95% 
CI: 7.16, 14.86; P < 0.00001; heterogeneity: χ2 = 1.58; I2 = 
0%; P = 0.45; Fig. 7A).

On the 14th day [29, 35, 64], a considerable improve-
ment was observed (MD: 8.55; 95% CI: 2.95, 14.14; P 
= 0.003; heterogeneity: χ2 =5.30; I2 = 62%; P = 0.07; 
Fig. 7B).

The 14-day group on the 14th day [4, 40, 48] experi-
enced varied results (MD: 7.85; 95% CI: −3.47, 19.17; P 
= 0.17; heterogeneity: χ2 =63.69; I2 = 97%; P < 0.00001; 
Fig. 7C).

On the 30th day [40, 48], a slight improvement was 
observed (MD: 3.06; 95% CI:0.26, 5.86; P = 0.03; het-
erogeneity: χ2 = 0.02; I2 = 0%; P = 0.90; Fig. 7D).

Fig. 3 A Forest plot of NIHSS on 7th day in 7‑day group. B Forest plot of NIHSS on 7th day in 7‑day group without Zhou et al.’s study. C Forest plot 
of NIHSS on 14th day in 7‑day group

Fig. 4 Forest plot of NIHSS in 10‑day group
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Fig. 5 A Forest plot of NIHSS on 14th day in 14‑day group. B Forest plot of NIHSS on 30th day in 14‑day group. C Forest plot of NIHSS on 90th day 
in 14‑day group

Fig. 6 A Forest plot of NIHSS scores on 30th day in 6‑month group. B Forest plot of NIHSS scores on 180th day in 6‑month group
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By the 90th day [31, 40, 45, 53], an improvement was 
still evident (MD: 4.73; 95% CI:1.92, 7.55; P = 0.001; 
heterogeneity: χ2 = 6.61; I2 = 55%; P = 0.09; Fig. 7E).

Modified Rankin Scale (mRS)
For the mRS outcome metric, reports were exclusively 
provided by the 7-day and 14-day groups, covering 
treatments over 7 days and 90 days, and for the 14-day 
group, an additional report at 90-day post-treatment. 
These datasets exhibited no heterogeneity, affirming the 

meta-analysis results as highly dependable. Consequently, 
fixed-effects models were applied across the board, dem-
onstrating that RIPostC effectively enhanced mRS scores 
in patients when compared to the control group. The 
mRS is used to evaluate the prognosis of various types 
of patients with stroke and to determine the efficacy of 
functional disability levels in rehabilitation patients. A 
lower score indicates a better prognosis and recovery.

In the 7-day group at 7 days [37, 41], the analysis indi-
cated a marginal improvement (MD: −0.21; 95% CI: 

Fig. 7 A Forest plot of BI on 7th day in 7‑day group. B Forest plot of BI on 14th day in 7‑day group. C Forest plot of BI on 14th day in 14‑day group. 
D Forest plot of BI on 30th day in 14‑day group. E Forest plot of BI on 90th day in 14‑day group
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Fig. 8 A Forest plot of mRS on 7th day in 7‑day group. B Forest plot of mRS on 90th day in 7‑day group. C Forest plot of mRS on 90th day in 14‑day 
group

−0.48, 0.06; P = 0.14; with zero heterogeneity: χ2 = 0.00; 
I2 = 0%; P = 0.14; Fig. 8A).

In the 7-day group at 90 days [37, 58], a significant 
enhancement was observed (MD: −0.46; 95% CI: −0.69, 
−0.23; P < 0.0001; with negligible heterogeneity: χ2 = 
0.09; I2 = 0%; P = 0.77; Fig. 8B).

In the 14-day group at 90 days [31, 50, 52, 53], a consid-
erable improvement was also recorded (MD: −0.54; 95% 
CI: −0.68, −0.39; P < 0.00001; with minimal heterogene-
ity: χ2 = 0.68; I2 = 0%; P = 0.88; Fig. 8C).

Interleukin‑6 (IL‑6) and tumor necrosis factor‑α (TNF‑α)
The 14-day group provided IL-6 (ng/L) levels on the 14th 
day of treatment, while the 6-month group reported both 
IL-6 and TNF-α (ng/L) levels in the first month of treat-
ment. Despite substantial heterogeneity among these 
datasets, analyses using a random-effects model indi-
cated that RIPostC significantly impacted these biomark-
ers favorably compared to the control group. IL-6 and 
TNF-α are both serum inflammatory factors, and their 
presence indicates inflammation. Lower levels suggest 
a milder inflammatory response in the patient’s body. 
Given the rapid inflammatory response post-stroke, the 
gradual decrease in inflammatory activity with treatment 
and time indicates stroke recovery.

At the 14-day mark for the 14-day group [50, 56], IL-6 levels 
considerably decreased (MD: −5.40; 95% CI: −11.91, 1.11; P 
= 0.10; heterogeneity: χ2 = 8.96; I2 = 89%; P = 0.003; Fig. 9A).

At the 30-day mark for the 6-month group [34, 54], 
IL-6 levels significantly reduced (MD: −16.19; 95% CI: 
−19.91, −12.47; P < 0.00001; heterogeneity: χ2 = 3.22; I2 
= 69%; P = 0.07; Fig. 9B).

For TNF-α at the 30-day mark [34, 54], significant 
changes were not observed (MD: 1.97; 95% CI: −32.10, 
36.03; P = 0.91; heterogeneity: χ2 = 145.95; I2 = 99%; P < 
0.00001; Fig. 9C).

C‑reactive protein (CRP), fibrinogen (FIB), and D‑dimer (D‑D) 
levels
CRP (pg/L) levels reported by the 6-month group at 1 
month showed significant improvement [34, 54] (MD: 
−20.05; 95% CI: −23.31, −16.79; P < 0.00001; heterogene-
ity: χ2 = 0.12; I2 = 0%; P = 0.73; Fig. 12A). FIB (g/L) lev-
els, disclosed by the 7-day group. improved significantly 
[42, 47] (MD: −0.71; 95% CI: −0.85, −0.57; P < 0.00001; 
heterogeneity: χ2 = 0.68; I2 = 0%; P = 0.41). D-D (mg/L) 
levels reported by the 7-day group indicated an insignifi-
cant decrease [36, 42] (MD: −0.63; 95% CI: −1.79, 0.54; P 
= 0.29; heterogeneity: χ2 = 14.72; I2 = 93%; P = 0.0001). 
Figure 10 illustrates these findings.
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Fig. 9 A Forest plot of IL‑6 on 14th day in 14‑day group. B Forest plot of IL‑6 on 30th day in 6‑month group. C Forest plot of TNF‑α on 30th day 
in 6‑month group

Fig. 10 A Forest plot of CRP on 30th day in 6‑month group. B Forest plot of FIB on 7th day in 7‑day group. B Forest plot of D‑D on 7th day in 7‑day 
group
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CRP is related to the inflammatory response, and the 
decrease in this indicator reflects the disappearance of 
inflammation in the patient’s body. The increase in FIB 
level represents the hypercoagulable state of blood, which 
is a critical factor in the occurrence of cerebral infarction 
and hinders the recovery of brain tissue after cerebral 
infarction. Its decrease represents the gradual withdrawal 
of the patient’s blood from the hypercoagulable state, 
which benefits the patient’s recovery. D-D mainly reflects 
the fibrinolytic function. An increase in D-D levels in 
plasma indicates the presence of secondary fibrinolysis, 
with lower levels indicating a better prognosis. These 
results suggest that RIPostC can modify these three indi-
cators beneficially, although heterogeneity across studies 
warrants careful interpretation of these results.

Brain‑derived neurotrophic factor (BDNF)
The 14-day group provided outcomes for BDNF at 14-day 
post-treatment [60, 61]. The meta-analysis improved sig-
nificantly in BDNF (µg/L) compared to the control group. 
Figure  11 illustrates the following finding. A marginal 
reduction was noted in the BDNF levels (MD: −0.31; 95% 
CI: −0.65, 0.03; P = 0.08; with no heterogeneity: χ2 = 0.00; 
I2 =0%; P = 0.98; Fig.e 11). The minimal change and close-
to-significance P-value indicate a modest effect of RIPostC 

on increasing BDNF levels, albeit without statistical sig-
nificance. BDNF regulates growth and development, and 
induces differentiation, while modulating the synaptic con-
nections of embryonic neurons. It simultaneously partici-
pates in activity-dependent neuronal plasticity, including 
regeneration, repair, and protection after injury, especially 
for cognitive function-related areas such as the frontal lobe 
and hippocampus. Therefore, higher levels of BDNF are 
expected to be more beneficial for patients.

Risk‑of‑bias assessment in the individual study
Cochrane Evaluation Tool 2 (ROB2) was used to 
evaluate the risk of bias in all included studies, cover-
ing five areas: bias risk caused by the randomization 
process, bias risk caused by deviation from expected 
intervention measures, missing outcome data, the risk 
of bias in outcome measurement, and the risk of bias 
in reporting outcome selection [65]. These areas are 
divided into “low risk,” “high risk,” or “some concerns”; 
they are independently completed by two researchers 
(M. Y. and J. W.), with a third researcher (J. L.) dis-
cussing and resolving potential disagreements. The 
quality assessment of the studies is shown in Figs. 12 
and 13. The Additional files 6 and 7 lists specific 
details (see Additional files 6 and 7).

Fig. 11 Forest plot of BDNF on 14th day in 14‑day group

Fig. 12 Risk‑of‑bias graph
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Sensitivity analysis
Data analyses revealed heterogeneity across nearly all 
results, leading to using a random-effects model for the 
meta-analysis. Identifying the precise contributors to 
this heterogeneity proved challenging even after sensitiv-
ity testing was performed. The observed heterogeneity is 
hypothesized to significantly correlate with factors such 
as the level of care provided by local hospitals, patient 
demographics, diversity in treatment approaches, and 
post-disease management. Despite this heterogeneity, the 
data suggest that RIPostC is an effective adjuvant therapy. 
Consequently, this analysis does not delve further into 
the issue of heterogeneity.

Publication bias
The potential for publication bias was investigated in the 
14-day group, which focused solely on the NIHSS score 
as an outcome measure and included over 10 original 

studies. The analysis suggested the likelihood of publica-
tion bias, which may stem from the small sample sizes 
of the numerous included studies and the potential for 
selective reporting by the researchers. The overall qual-
ity of the included studies was assessed as low, compli-
cating the identification of the source of this publication 
bias. The funnel plot detailing this analysis is available in 
the Additional file 8 (see Additional file 8).

GRADE evidence quality
The evidence quality for the outcomes assessed in the 
systematic review and meta-analysis was evaluated using 
the GRADE approach. The mRS was deemed to be of 
“moderate” quality. In contrast, the NIHSS, BI, and CRP 
were determined to be of low quality. Furthermore, IL-6, 
TNF-α, FIB, D-D, and BDNF received “very low” quality 
ratings. The Additional file 9 details an in-depth grading 
analysis (see Additional file 9).

Fig. 13 Risk‑of‑bias summary graph
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Adverse reactions
Adverse reactions were reported in only five studies [33, 
36, 47, 48, 64]. Most studies did not report any adverse 
reactions or were devoid of them. In Jiang et al.’s research 
[33], two patients reported minor swelling and pain in 
the limb used for pressure training, which subsided com-
pletely after a 30-min rest period. Fang et al.’s [36] study 
noted a single case of limb numbness in the experimental 
group, which resolved during treatment. Zhou et al. [47] 
reported that two patients who gradually adapted initially 
experienced pain in the upper limbs during training. 
According to Zhao et  al.’s investigation [64], 32 patients 
experienced pain and numbness in the compressed limb 
during the RIPostC operation, 4 of whom exhibited 
subcutaneous bleeding; these symptoms were relieved 
entirely within 5-min postoperation, and the bruising 
resolved within a day. Li et  al. [48] reported that five 
patients had bleeding spots and petechiae at the cuff site 
following treatment, which naturally resolved within 1 to 
2 days; three patients developed numbness and swelling 
in the upper arm, which reduced or vanished upon cuff 
adjustment or pressure reduction, becoming tolerable 
after 2 to 3 days of acclimatization.

Discussion
In this meta-analysis, randomized controlled trials of 
RIPostC were systematically reviewed to assess its effi-
cacy in enhancing the salvage and recovery of patients 
suffering from AIS. Compared to control groups, RIPostC 
demonstrated superior outcomes across most measured 
indicators, showing significant advantages. This meta-
analysis included 38 randomized controlled trials involv-
ing 4334 patients. The intervention groups underwent 
RIPostC, while the control groups were treated with 
standard therapeutic interventions such as thrombolysis, 
blood pressure management, anticoagulation, antiplate-
let therapy, antioxidant treatments, and fluid replenish-
ment. The statistical outcomes revealed that RIPostC 
significantly reduced the NIHSS scores in patients with 
acute cerebral infarction, independent of the duration 
of the intervention or the specific protocols of RIPostC 
applied. Regarding the BI scores, though only the 7-day 
and 14-day intervention data were eligible for this meta-
analysis, it was observed that RIPostC contributed to 
significant improvements in BI scores over both short-
term (7-day and 14-day) and long-term (90-day) periods. 
Similarly, the mRS analysis, restricted to the 7-day and 
14-day data, indicated that RIPostC effectively enhanced 
mRS scores in short-term (7-day) and long-term (90-
day) assessments, suggesting an improved prognosis for 
patients receiving RIPostC treatment. In acute inflam-
mation, analyses incorporated IL-6 data from the 14-day 
and 6-month groups. The findings indicated a significant 

decrease in IL-6 levels by the 30th day compared to the 
14th day, indicating that extended treatment duration 
with RIPostC enhances anti-inflammatory recovery in 
patients. TNF-α levels were explicitly reported by the 
6-month group, demonstrating RIPostC’s effectiveness. 
A comparison with shorter-duration data, similar to the 
IL-6 analysis, would have provided a clearer picture of 
RIPostC’s impact on reducing TNF-α levels. CRP serves 
as a marker for chronic inflammation related to athero-
sclerosis. CRP levels, reported by the 6-month group at 
1 month, showed a reduction following RIPostC treat-
ment. Future research should include assessments at var-
ied intervals to comprehensively assess RIPostC’s effect 
on atherosclerosis-related chronic inflammation. FIB 
and D-D are indicators of the hypercoagulable state in 
patients with AIS. Both indicators, reported by the 7-day 
group on the 7th day, showed reductions post-RIPostC 
intervention, indicating amelioration of the hypercoagu-
lable state. The limited measurement time points high-
light the need for future studies to incorporate multiple 
assessment moments to depict changes fully. The eleva-
tion of BDNF concentration in the cortex could enhance 
synaptogenesis and dendritic spine development, thereby 
facilitating cortical functional remodeling in survivors of 
stroke. Despite only the 14-day group reporting on BDNF 
levels at 14 days, RIPostC was observed to increase this 
parameter, suggesting facilitation in the neuronal repair 
process in patients. Regarding the safety of RIPostC, 
adverse effects were reported only in five studies, with all 
incidents being minor and not impacting the course of 
treatment. This observation suggests that RIPostC is safe, 
with no cases of recurrent cerebral infarction or death 
reported among participants across the studies.

RIPostC has been more frequently applied in car-
diac ischemia [66–70]; however, its use in treating cer-
ebral ischemic conditions has increased recently. The 
protective action of RIPostC in patients with ischemia 
is multifaceted, involving anti-inflammatory and anti-
oxidant effects, inhibition of apoptosis, regulation of 
protein expression, and modulation of protease activity 
[71]. These effects activate the body’s innate ischemic 
tolerance through short cycles of nonfatal, reversible 
ischemia and reperfusion, mediated by both humoral and 
immune-inflammatory regulatory mechanisms, confer-
ring protection. Although the serum factors measured 
in the included studies do not fully cover all aspects of 
RIPostC’s protective mechanisms, they illustrate its 
potential benefits. FIB is a coagulation factor in plasma 
and an inflammatory marker, contributing to atheroscle-
rosis by accumulating in the vessel wall, which can lead to 
endothelial cell migration, denaturation, and thrombosis 
due to its role in smooth muscle cell proliferation, hyper-
trophy, and enhancement of platelet aggregation and 
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blood viscosity. Elevated levels of FIB are closely asso-
ciated with the onset of acute cerebral infarction. D-D 
indicates fibrinolytic activity, with its levels increasing in 
response to active thrombus formation and fibrinolysis 
within the body’s blood vessels. The presence of covalent 
cross-links between the Y-chains underpins the struc-
ture of D-D, making it a sensitive and specific marker 
for the early diagnosis of cerebral infarction. Moreover, 
D-D levels help monitor the effectiveness of thrombo-
lytic therapy and are directly proportional to the severity 
of cerebral infarction. Patients exhibiting elevated D-D 
levels in their plasma are at an increased risk of experi-
encing subsequent cerebral infarctions [72–75]. Research 
has documented that an inflammatory cascade is trig-
gered following ischemia-reperfusion injury in the brain. 
CRP is an inflammatory marker capable of independently 
predicting future vascular incidents. Elevated CRP lev-
els may serve as an indirect indicator of endothelial cell 
impairment, activation of inflammatory cytokines, vascu-
lar damage, and the predominant thrombotic conditions, 
all of which are intricately linked to the development 
and progression of atherosclerosis [76–80]. BDNF is 
a neurotrophic factor critical in maintaining neuronal 
survival, growth, differentiation, and repair post-injury. 
It enhances the proliferation of neural stem cells within 
the brain, fostering the developmental differentiation 
and growth necessary for neuronal regeneration. BDNF 
levels are significantly crucial for the recovery process in 
patients with ischemic stroke [81–83]. Beyond the direct 
impact of cerebral ischemia due to the depletion of inter-
mediate metabolites and oxygen, the release of various 
amino acids from the cytosol substantially contributes to 
postischemic brain damage. The metrics analyzed in this 
study, including the NIHSS, BI, mRS, IL-6, TNF-α, CRP, 
FIB, D-D, and BDNF, demonstrate either improvement 
or reduction due to RIPostC over extended intervention 
durations. These observations indicate that the benefits 
of RIPostC become more pronounced with extended 
intervention periods, highlighting its potential as a treat-
ment for AIS.

The considerable heterogeneity observed across groups 
for several indicators could stem from substantial differ-
ences in either the baseline or endpoint values of these 
indicators in certain studies, differences in the standard 
treatments administered, or variations in the duration, 
number of cycles, timing of ischemia, and reperfusion 
periods used in RIPostC across studies. Despite these 
sources of heterogeneity, the findings from the random-
effects model meta-analysis are deemed significant.

Comparison with previous studies
In exploring English-language databases, only four meta-
analyses and systematic reviews relevant to this field have 

been identified, with two focusing on animal studies and 
the other on clinical trials. The reviews of animal studies 
[84, 85], though encompassing a wide array of primary 
research and conducted across various species, provided 
a comprehensive and detailed assessment of the out-
comes. These analyses present robust evidence support-
ing the preclinical efficacy of RIPostC. However, these 
two animal studies could interest researchers intending 
to conduct animal-based investigations into RIPostC. The 
remaining two reviews, focusing on clinical trials, one 
published in 2022 [86] and the other in 2018 [87], offer 
crucial insights and serve as significant resources for clin-
ical practitioners during those periods. Both reviews con-
firmed the therapeutic significance and safety of RIPostC 
in the treatment of patients with ischemic stroke. How-
ever, they were limited by the relatively small number 
of primary studies they encompassed, and the scope 
of outcome measures considered was not exhaustive. 
Furthermore, subgroup analyses were not conducted. 
While recognizing the significance of these two reviews 
in evidence-based medicine and their relevance for clini-
cal practitioners, this study incorporates more primary 
research, a broader range of outcome measures, and sub-
group discussions, enhancing the robustness of the ana-
lytical results.

Strengths of this study
This review compiles all existing research on RIPostC 
for AIS treatment in China, categorizing it into detailed 
segments based on the duration of RIPostC application. 
It examines up to 10 outcome indicators to elucidate the 
effects of RIPostC as comprehensively as possible. While 
medical professionals have recommended RIPostC for 
cardiac conditions for many years, evidence has high-
lighted its significant efficacy in stroke treatment. In 
an era where alternative stroke treatments are actively 
sought, RIPostC emerges as an effective, safe, and novel 
adjuvant therapy. This review contributes new evidence-
based medical insights for the clinical application of 
RIPostC, supporting its application beyond traditional 
heart disease treatments.

Limitations
This study may exhibit a language bias due to the exclu-
sive inclusion of Chinese-language studies. The meth-
odological quality of the included studies was generally 
low, with no descriptions of allocation concealment 
or blinding provided, raising concerns about potential 
researcher bias. Variations in the frequency, pressure 
of RIPostC application, intervention durations, and 
inconsistencies in the reported underlying treatments 
likely contributed to the high heterogeneity across 
studies. With a total sample size of 4324 participants 



Page 18 of 21Yan et al. Systematic Reviews          (2024) 13:141 

across single-center trials, the study’s results could 
be influenced by the subjective perspectives of the 
researchers, impacting the robustness of the conclu-
sions. The potential effect of the patients’ preexisting 
conditions on the outcome indicators further limits 
the extrapolation of the study’s findings. Adverse reac-
tions were reported in only five studies, indicating that 
a more comprehensive safety assessment across more 
extensive and diverse clinical studies is warranted. The 
publication bias, possibly resulting from small study 
sizes, lack of multicenter trials, and selective report-
ing by researchers, cannot be ruled out. The overall low 
quality of the included studies complicates identifying 
specific causes for this issue.

Conclusions
In summary, the available evidence suggests that RIpostC 
beneficially impacts the treatment and recovery of 
patients with acute cerebral infarction compared to 
standard controls. However, the inherent limitations in 
the design quality of the included trials may influence the 
outcomes of our analysis, introducing a degree of bias. 
Consequently, future research should focus on elucidat-
ing the mechanistic underpinnings of RIpostC’s effects 
on AIS. Furthermore, there is a need for further rand-
omized controlled trials employing rigorous methodolo-
gies to substantiate our findings.
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