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Abstract 

Background  Binary outcomes are likely the most common in randomized controlled trials, but ordinal outcomes can 
also be of interest. For example, rather than simply collecting data on diseased versus healthy study subjects, investi-
gators may collect information on the severity of disease, with no disease, mild, moderate, and severe disease as pos-
sible levels of the outcome. While some investigators may be interested in all levels of the ordinal variable, others may 
combine levels that are not of particular interest. Therefore, when research synthesizers subsequently conduct a net-
work meta-analysis on a network of trials for which an ordinal outcome was measured, they may encounter a network 
in which outcome categorization varies across trials.

Methods  The standard method for network meta-analysis for an ordinal outcome based on a multinomial gen-
eralized linear model is not designed to accommodate the multiple outcome categorizations that might occur 
across trials. In this paper, we propose a network meta-analysis model for an ordinal outcome that allows for mul-
tiple categorizations. The proposed model incorporates the partial information provided by trials that combine 
levels through modification of the multinomial likelihoods of the affected arms, allowing for all available data to be 
considered in estimation of the comparative effect parameters. A Bayesian fixed effect model is used throughout, 
where the ordinality of the outcome is accounted for through the use of the adjacent-categories logit link.

Results  We illustrate the method by analyzing a real network of trials on the use of antibiotics aimed at prevent-
ing liver abscesses in beef cattle and explore properties of the estimates of the comparative effect parameters 
through simulation. We find that even with the categorization of the levels varying across trials, the magnitudes 
of the biases are relatively small and that under a large sample size, the root mean square errors become small as well.

Conclusions  Our proposed method to conduct a network meta-analysis for an ordinal outcome when the categori-
zation of the outcome varies across trials, which utilizes the adjacent-categories logit link, performs well in estimation. 
Because the method considers all available data in a single estimation, it will be particularly useful to research synthe-
sizers when the network of interest has only a limited number of trials for each categorization of the outcome.
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Background
Network meta-analysis (NMA) is an extension of tradi-
tional pairwise meta-analysis that allows for the simulta-
neous comparison of multiple interventions by utilizing 
direct and indirect evidence from a network of rand-
omized clinical trials [1]. When the outcome of interest 
is categorical with more than two categories, the NMA 
is typically conducted through the use of a generalized 
linear model (GLM) where the random component is 
multinomial, as described by [2]. It is common to utilize 
some type of logit link in a multinomial GLM [3], under 
which the parameters of interest in the NMA correspond 
to log-odds ratios of subjects belonging to a given cate-
gory versus another under a particular intervention rela-
tive to the network’s baseline intervention. The type of 
logit employed determines the outcome categories under 
consideration in these comparative effect parameters. 
When the outcome is unordered, the baseline-category 
logit is often used [4], and the log-odds ratios are param-
eterized in terms of non-baseline categories versus a 
selected baseline category. When the outcome is ordered, 
it is often referred to as an ordinal variable with the cat-
egories referred to as levels. One possible choice of link 
function for analyzing an ordinal outcome is the adja-
cent-categories logit [3], under which the log-odds ratios 
are parameterized in terms of adjoining levels. Analysts 
can select the logit link that best matches their question 
of interest given the properties of the outcome.

While ordinal outcomes must be comprised of mutu-
ally exclusive and exhaustive levels, reporting of data for 
such an outcome can depend on the question of interest 
being addressed in a given trial. This often leads to net-
works for which the categorization of the outcome varies 
across trials. For example, suppose that we are interested 
in the effects of a set of interventions on an ordinal out-
come with four mutually exclusive and exhaustive levels, 
call them A, B, C, and D. While some trials report event 
counts for each of the four levels, others may report 
combined values for B and C or even for B, C, and D. 
Data combined in this fashion has been referred to as 
incomplete [5]. Note that incomplete data in the sense 
presented here is unique to categorical outcomes and is 
distinct from the phenomenon of missing data for which 
the values for some subjects are either not measured or 
not reported at all [6–8]. Trials that report incomplete 
data can still provide information that contributes to our 
knowledge of the underlying comparative effects. For 
example, if we are utilizing the adjacent-categories logit 
link, the combined data for levels B and C can inform 
the estimates of the log-odds ratios involving B versus 
A and D versus C. To maximize the utility of the net-
work of trials, it would be advantageous to consider all 
of the available data in estimation, regardless of outcome 

categorization. Unfortunately, the standard multino-
mial GLM framework cannot simultaneously incorpo-
rate data from multiple categorizations without some 
modification.

The problem of multiple outcome categorizations 
within a network has been addressed by [5] for the case 
of an unordered outcome. They proposed an extension 
to the multinomial GLM framework wherein the form 
of the multinomial likelihood was modified to allow for 
outcome categories to be combined according to a trial’s 
categorization. Their model incorporates random com-
parative effects and utilizes the baseline-category logit 
link. However, the modified multinomial likelihood was 
structured around a specific example and is therefore 
not provided in a general form. In addition, the authors 
did not evaluate the performance of the model through 
simulation.

In this paper, we extend the method developed by [5] 
on several fronts. First, we take a step toward adapting 
the method for the case of an ordinal outcome by pro-
posing a model that utilizes the adjacent-categories logit 
link rather than the baseline-category logit. The structure 
of the adjacent-categories logit link takes into account 
the ordering of the outcome [3] and is particularly useful 
if we are interested in the log-odds ratios pertaining to 
adjoining levels, as parameters representing these com-
parisons are directly included in the model. Second, we 
provide the general form of the modified multinomial 
likelihood that allows for any outcome categorization, 
whether the outcome is ordered or unordered. Through-
out, we assume that the intervention effects are fixed, 
although this can be extended to the random effects case 
in a manner similar to that presented in [5], and use a 
Bayesian approach by conducting estimation through 
Markov Chain Monte Carlo (MCMC).

The remainder of the paper is organized as follows. The 
“Methods” section details the proposed model, including 
the general form of the modified multinomial likelihood, 
and describes the approach to estimation. The “Applica-
tion” section illustrates a use case of the proposed model 
through an analysis of a real network of trials comparing 
the effects of various regimens of antibiotics on the pre-
vention of liver abscesses in beef cattle, where the sever-
ity of the abscesses is reported on an ordinal scale. The 
“Simulation”  section presents a simulation study that 
assesses the estimation performance of the proposed 
model, and the “Discussion” and “Conclusions”  sections 
discuss and conclude.

Methods
This section specifies the proposed NMA model for an 
ordinal outcome when outcome categorization varies 
across trials. This includes detailing the general form of 
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the modified multinomial likelihood and the model for 
the response probabilities that follows from use of the 
adjacent-categories logit link. The proposed model is a 
modified version of that detailed in [5] for an unordered 
outcome, with some of the notation borrowed from [2]. 
The Bayesian estimation approach used throughout, 
including the specification of priors and starting values, 
is also presented.

Accommodating multiple outcome categorizations
Here the general form of the modified multinomial like-
lihood that allows for any outcome categorization is 
specified. While the term levels will be used to denote 
the outcome categories, this notation is also applica-
ble to the unordered case. Consider K interventions 
compared in I trials, where trial i has ni arms. Suppose 
that the outcome consists of M mutually exclusive and 
exhaustive levels, but that a given trial need not report  
data for each level separately. Rather, data for some  
levels may be reported together. That is, suppose that 
trial i collapses the M levels into Mi ≤ M groups denoted  
by Ai,1,Ai,2, . . . ,Ai,Mi that are mutually exclusive and 
exhaustive. Let ri,k ,1, . . . , ri,k ,M  be the vector of true, 
but potentially unreported, counts for the M levels under 
trial i and intervention k. We can denote the total count 
for the cth combined category under trial i and interven-
tion k as

where the separate counts ri,k ,m for m ∈ Ai,c are unre-
ported if they belong to a group of combined levels. This 
notation for the grouping of levels is adapted from that 
given in [9] for the form of the collapsed and partitioned 
multinomial distribution. Note that this notation is appli-
cable to both unordered and ordinal outcomes, but under 
the ordinal case it is reasonable to restrict groups to 
include only adjacent categories.

The reported data for intervention k in study i can then 
be modeled using a multinomial likelihood:

where pi,k and zi,k are the response probability and 
observed count vectors for intervention k in trial i, pi,k ,m 
is the true response probability for intervention k and 
level m in study i, and Ni,k =

∑Mi
c=1 zi,k ,c =

∑M
m=1 ri,k ,m . 

Since the levels are mutually exclusive and exhaustive, 
∑Mi

c=1

∑

m∈Ai,c
pi,k ,m =

∑M
m=1 pi,k ,m = 1 for each trial i 

and intervention k.
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Following independence, the likelihood for the entire 
network is then

where p and z are the response probability and observed 
count vectors for the entire network and Ki denotes the 
group of ni interventions included in trial i.

The modified likelihood accommodates the reporting 
of data for combined levels through the incorporation 
of the total outcome counts and response probabilities 
of the respective levels. The trials that combine levels 
therefore provide partial information on the underlying 
response probabilities [5], allowing for all data available 
across the network to contribute to the estimation of the 
model parameters.

Model for the response probabilities
When working with an ordinal outcome, it is natural to be 
interested in comparisons of interventions that involve the 
underlying order. A link function should be selected such 
that it allows analysts to directly make those comparisons 
of interest. The cumulative logit and the adjacent-catego-
ries logit links are common choices for an ordinal outcome. 
However, if proportional odds are not assumed, use of the 
cumulative logit does not necessarily result in valid esti-
mated response probabilities [3]. In the context of NMA, 
proportional odds implies that the comparative effects of 
interventions are identical for each of the level pairings 
considered under the chosen link function. The propor-
tional odds assumption can be useful, particularly if there is 
reason to believe that the effects of interventions are simi-
lar across each of the level pairings, because it utilizes the 
ordinality of the outcome to reduce the number of param-
eters included in the model [3]. We leave the development 
of a procedure for determining when it is appropriate to 
assume proportional odds under the given framework 

for future work, and opt to utilize the adjacent-categories 
logit link under non-proportional odds for the remainder 
of this paper. Under the adjacent-categories logit link, the 
comparative effects are log-odds ratios of a subject belong-
ing to a given level relative to the level below it. This could 
be of interest, for example, if we have a network where the 
outcome consists of the severity of disease ranging from 
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healthy to severe. The estimates of the comparative effects 
would then provide insight on how interventions affect 
the odds of a subject belonging to the mild relative to the 
healthy state, the moderate relative to the mild state, and 
the severe relative to the moderate state. Since the adjacent-
categories logit and baseline-category logit are functionally 
reparameterizations of each other [3], such comparisons 
could be made under the baseline-category logit link indi-
rectly. However, the use of the adjacent-categories logit 
puts parameters corresponding to the comparisons of 
interest directly in the model. This approach can be helpful 
when specifying priors, making inferences, and diagnosing 
problems with estimation.

Since each trial does not necessarily include each of the 
K interventions, some additional notation is necessary. 
An overall baseline intervention for the network, b, must 
be selected. This will often correspond to a placebo or 
standard therapy group. Each trial i also has a trial-spe-
cific baseline intervention, bi , which will be the same as b 
if b ∈ Ki . Then the response probabilities can be modeled 
as

where I(·) denotes the indicator function, and

The logit described in Eq.  4 can be interpreted as the 
log-odds of a subject belonging to level m versus m− 1 
under trial i and intervention k. Under Eq.  4, the µi,m 
correspond to trial-specific baselines representing the 
log-odds of level m versus level m− 1 under study i’s 
baseline intervention bi . These are regarded as nuisance 
parameters and serve only to set up the contrast needed 
to include the parameters corresponding to the com-
parative effects. The dbi ,k ,m represents the log-odds ratio 
of a subject belonging to category m versus m− 1 under 
intervention k relative to the trial-specific baseline bi . 
These are included in Eq. 4 only if k  = bi , as if k = bi then 
µi,m represents the corresponding logit on its own. Fol-
lowing from the consistency assumption (see [10] for an 
overview of the assumptions commonly made in NMA),

where dk ,m represents the log-odds ratio of a subject 
belonging to category m versus m− 1 under interven-
tion k relative to the overall baseline intervention b. 
The dk ,m are the parameters of interest and do not vary 
across trials under the assumption of fixed interven-
tion effects. Under the consistency assumption, the 

(4)θi,k ,m = log
(

pi,k ,m/pi,k ,m−1

)

= µi,m + dbi ,k ,mI(k �= bi) form = 2, . . . ,M,

(5)θi,k ,m = 0 form = 1.

(6)dbi ,k ,m =

{

dk ,m − dbi ,m bi �= b
dk ,m bi = b

comparative effect between any two interventions k1 and 
k2 is dk1,k2,m = dk2,m − dk1,m.

Expressions for the response probabilities can be 
obtained through an application of the inverse adja-
cent-categories logit function [11] to Eqs. 4 and 5:

and

Bayesian implementation
The model parameters are estimated using MCMC via 
the JAGS software package [12]. The Bayesian approach 
is advantageous for the proposed method, as it allows 

for the specification of informative priors to help over-
come the lack of identifiability of some of the trial- 
specific baseline parameters.

Prior specification
In order to implement the Bayesian approach, priors 
need to be assigned to the parameters in the model. 
Since we are assuming fixed intervention effects, we 
need only consider each of the µi,m and dk ,m . Identifi-
ability of the dk ,m requires that for each adjacent pair of 
levels there exists a path of comparisons that connects 
all of the interventions such that in each comparison the 
event counts for the two levels are reported separately. 
Assuming that this condition holds, we can assign these  
parameters non-informative Normal(0, 1, 000, 000) priors  
as was done in [5].

Recall that the µi,m are trial-specific baselines rep-
resenting the log-odds of a subject belonging to level 
m versus m− 1 under trial i’s baseline intervention bi . 
Since any combination of adjacent levels is allowed 
in the observed data, for a given trial, separate event 
counts for levels m and m− 1 may not be reported. 
This means that there will not be data available to esti-
mate some of the µi,m parameters. Stronger priors can 
be used to help overcome this lack of identifiability. We 
propose the following procedure to specify priors for 
the µi,m . For the group of trials T that report separate 
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event counts for levels m and m− 1 under trial-specific 
baseline intervention bi : 

1.	 Calculate the empirical log-odds for category m ver-
sus m− 1 under intervention bi from the available 
data. In the specified notation, these would take the 
form yi = log(ri,bi ,m/ri,bi ,m−1) for trials i ∈ T  . Note 
that if either of the event counts is 0 for trial i, we add 
0.5 to each count to ensure that the empirical log-
odds fall on the real line.

2.	 Fit the following Bayesian model using the yi from 
the previous step as data: yi

iid
∼Normal(µ, σ 2) with 

priors µ ∼ Normal(0, 1000) and σ ∼ Uniform(0, 5) . 
This can be done using JAGS via the rjags R pack-
age [13], where 10,000 iterations are run for each of 
burn-in and sampling. Note that this step is adapted 
from the estimation of the baseline-effects model 
under NMA for a binary outcome presented in [14].

3.	 Letting µ̂ and σ̂ 2 denote the posterior means 
of µ and σ 2 obtained in step 2, assign the prior 
µi,m ∼ Normal

(

µ̂, σ̂ 2
)

 for each i ∈ T .

Selection of starting values
Selecting suitable starting values is important to ensure 
proper behavior of the MCMC chains. Schmid et al. [5] 
proposes a method for selecting dispersed starting values 
under the baseline-category logit link. This procedure 
was later implemented in the BNMA R package [15].  
We modify this procedure for use with the adjacent- 
categories logit link by substituting the empirical adjacent- 
categories log-odds for the empirical baseline-category 
log-odds in the described regression.

Parameter estimation
Estimation was achieved through MCMC using the JAGS 
software, where we interfaced with JAGS via the rjags 
R package. Four MCMC chains were used, and proper 
convergence and mixing of the chains were monitored 
through the Gelman-Rubin diagnostic [16] and examina-
tion of the trace plots.

Application
In this section, the use of the proposed model is illus-
trated through the analysis of a network of studies exam-
ining the effects of several antibiotic regimens on the 
prevention of liver abscesses in beef cattle. Many studies 
in the veterinary literature have compared the efficacy of 
various interventions on this outcome, but synthesis of 
this research has proved difficult because the categoriza-
tion of the outcome varies across trials. Abscess sever-
ity is often measured using an ordinal scale containing 
four levels: healthy (H), one or two small abscesses (A−), 

two to four small abscesses (A), and one or more large 
abscesses (A+) [17, 18]. This ordinal scale is well estab-
lished in the beef cattle industry. However, because the 
economic impact of liver abscesses is mainly linked to the 
A+ level, some investigators combined levels A−  and A 
[19, 20], resulting in a three-level outcome variable. This 
three-level scale is currently used by the well-known 
Elanco Liver Check Service [21]. Still other investigators 
report the presence of any abscess regardless of severity, 
combining A−, A, and A+ [22, 23], resulting in a two-
level outcome variable. To control liver abscesses, in-feed 
antibiotics are used. Currently, in-feed tylosin phosphate, 
an antibiotic in the same family as erythromycin, is the 
primary approach to the prevention of liver abscesses. 
However, over the years numerous approaches to control 
have been evaluated including diets, other antibiotics, 
non-antibiotic additives, ionophores, and other regimens 
of tylosin.

The data for this network are a subset of that obtained 
from a systematic review of interventions aimed at pre-
venting liver abscesses in cattle (the review protocol of 
which is available at https://​syreaf.​org/​proto​cols/). For 
the purposes of this project, only four interventions 
are included in the network presented here to enable 
focus on the methodological issue of interest. Three of 
the intervention groups are regimens of the antibiotics 
tylosin phosphate or virginiamycin while the fourth is 
a placebo group. An example of a trial identified by the 
review but excluded in this study is [24]. The purpose of 
this trial was to evaluate the effect of a phytogenic feed 
additive (Digestarom; Biomin, Getzersdorf, Austria) on 
multiple outcomes including liver abscesses in finishing 
steers. Since the trial did not examine any of the tylosin 
phosphate or virginiamycin regimens of interest it was 
excluded from our network.

For the trials included in the network, we defined a 
placebo arm as any trial arm that did not contain tylo-
sin phosphate or virginiamycin. Placebo arms contained 
any level of monensin or diet composition. Monensin 
is an ionophore administered in feed that promotes the 
efficient use of feedstuffs and is not considered to have 
any impact on liver abscesses. As many trials included 
multiple such arms, the data from these arms were com-
bined to create a single placebo arm per trial. To illus-
trate this approach we use a trial published in [17]. This 
trial was a 2 by 3 factorial design with one factor being 
diet: based on steam-flaked corn finishing diet (SFC) or 
SFC plus 25% (dry basis) corn wet distillers grains with 
solubles (WDGS). The second factor was feed additives: 
no added antibiotics (NONE), 300 mg of monensin daily 
(MON), or 300 mg of monensin + 90 mg of tylosin phos-
phate daily (MON+TYL). Our approach to handling 
such a trial was to combine the data for the NONE + 

https://syreaf.org/protocols/
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SFC, NONE + WDGS , MON + SFC, and MON + WDG 
arms into a single placebo arm. The antibiotic arm (tylo-
sin phosphate) was created by combing the data from 
the (MON + TYL) + SFC and (MON + TYL) + WDGS 
arms. The treatments were fed from arrival to slaughter, 
i.e., 150 days.

Tylosin phosphate arms were categorized based on 
dosing regimens as follows:

•	 Protocols that began the feeding period without tylo-
sin phosphate and started to feed constantly late in 
the feed period (latestart)

•	 Protocols that began the feeding period with tylo-
sin phosphate and ended the feeding period without 
tylosin phosphate (earlyfinish)

•	 Protocols that did use tylosin phosphate for the entire 
feeding period but limited the period to less than or 
equal to 100 days (short)

•	 Protocols that did use tylosin phosphate for the entire 
feeding period but that feeding period was more than 
100 days (long)

•	 Protocols that did use tylosin phosphate for the entire 
period but intermittently (intermittent).

An example of the use of this approach to categorize 
tylosin regimens is provided by [25], which investigated 
management strategies that reduce in-feed tylosin phos-
phate in the control of liver abscesses in feedlot cattle. 
A total of 7576 crossbred yearlings were allocated to the 
trial (approximately 253 animals/pen with 10 replicate 
pens per treatment) and individually randomized to one 
of three treatments: tylosin phosphate (11 ppm) was 
included in-feed (1) for the first 125 days on feed (DOF) 
(earlyfinish) (2) for DOF 41 to 161 (latestart) or (3) for the 
entire feeding period for DOF 0 to 161 (long). However, 
for this project, we only included arms corresponding to 
the “long” regimen as a means of keeping the illustrative 
data set simple. This is also the registered dose, while the 
others are exploratory.

Virginiamycin arms were categorized based on two 
dose levels: less than 15 mg/kg, and greater than or 
equal to 15 mg/kg. An example of an application of this 
grouping scheme follows from [26], which fed cattle a  
four-level range of virginiamycin (0, 10, 25, and 50 mg/kg)  
over multiple trials throughout a 245 day growing- 
finishing period. For this trial, the 0 mg/kg arm was des-
ignated as the placebo, 10 mg/kg arm was designated as 
being less than 15 mg/kg, and the data for the 25 mg/kg 
and 50 mg/kg arms were combined into a single arm with 
greater than 15 mg/kg virginiamycin.

Figure 1 presents a diagram of the network. Note that 
every trial included a placebo group, and that the tylosin 
phosphate regimen is included in a large number of trials 

relative to the virginiamycin regimens. Also note that 
the tylosin phosphate regimen is not directly compared 
with either of the virginiamycin dosing regimens. Each 
of the three liver abscess categorizations detailed in the 
first paragraph of this section is present in the network. 
Table  1 details the frequencies of these categorizations. 
While 12 of the 22 trials comparing tylosin phosphate to 
the placebo reported complete data (4 levels), complete 
data was available in only four of the eight trials including 
either of the virginiamycin regimens. The remaining four 
trials that included either of the virginiamycin regimens 
combined A−, A, and A+ in their reporting. There is thus 
substantially less data available to estimate the compara-
tive effects involving virginiamycin compared to those for 
tylosin phosphate.

Estimation was conducted as described in the “Bayes-
ian implementation” section. Here the model parameters 
were estimated using 50,000 iterations for each of burn-
in and sampling. Table 2 displays the point estimates and 
95% credible intervals for each of the basic comparative 
effect parameters on the log-odds ratio and odds ratio 
scales. A negative estimate on the log-odds ratio scale 
means that a subject is estimated to be relatively more 
likely to belong to the lower disease level than the higher 
one under the noted intervention compared to under the 
placebo. We note that the 95% credible intervals are quite 
wide for the comparative effects associated with virginia-
mycin due to the limited amount of data on that antibiotic 
in the network.

Simulation
In this section, properties of the estimates of the com-
parative effect parameters are evaluated through simula-
tion under two scenarios. In the first, we treat the point 

Fig. 1  Diagram of the liver abscess trial network. Nodes are 
interventions and edges are direct comparisons. The size of the nodes 
and the numbers in parentheses indicate the number of trials 
that include each intervention, while the edge width indicates 
the number of direct comparisons made between each intervention
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estimates obtained in the “Application”  section as the 
true values for the parameters and use these values to 
repeatedly regenerate the data for the liver abscess net-
work. The estimates obtained by analyzing the regen-
erated datasets can then be used to calculate bias, root 
mean square error (RMSE), and coverage probability of 
the credible intervals. The second scenario is similar to 
the first, except that here in the regeneration step data 
for each study is generated ten times as if it came from 
ten different studies. This results in simulated datasets 
that are ten times larger than those in the first scenario, 
which allows for the evaluation of large-sample estima-
tion performance.

Scenario I
The simulation procedure for the first scenario is as 
follows: 

1.	 Obtain the posterior means for each parameter from 
the existing NMA (values for the comparative effects 
are given in Table 2, while those for the trial-specific 
baselines are not shown). For each trial i, interven-
tion k and outcome level m = 2, . . . ,M that occurs 
in the network, let µ̂i,m and d̂k ,m denote the corre-
sponding posterior means.

2.	 For each trial i, intervention k and outcome level  
m = 2, . . . ,M in the network, calculate θ̂i,k ,m =

µ̂i,m + d̂bi ,k ,m where d̂bi ,k ,m is obtained by using the 
estimated comparative effects in Eq.  6, i.e., the con-
sistency assumption. Then obtain values for the mul-
tinomial response probabilities, denoted by p̂i,k ,m , 
using θ̂i,k ,m in Eqs. 7 and 8.

3.	 Complete the following 1000 times: 

(a)	 Generate the complete data for the net-
work using the calculated probabilities. 
For each trial i and intervention k in Ki : 
(ri,k ,1, . . . , ri,k ,M) ∼ Multinomial(Ni,k , (p̂i,k ,1, . . . , p̂i,k ,M)).

(b)	 Combine the outcome data where neces-
sary as indicated by the existing network. This 
gives the observed data in the form of the zi,k ,c , 
where zi,k ,c =

∑

m∈Ai,c
ri,k ,m and Ai,c is the cth 

group of outcome levels for trial i.
(c)	 Conduct the analysis on the generated dataset 

using the proposed model as was done in the 
“Application”  section. Here 25,000 iterations 
were used for each of burn-in and sampling to 
ensure reasonable computation time. Record 
the posterior means of the dk ,m , the compara-
tive effect parameters of interest.

4.	 Calculate the bias, RMSE, and coverage probability 
for each of the dk ,m using the posterior means as the 
point estimates.

Table 1  Frequencies of each of the outcome categorizations. The second column contains the total number of trials utilizing each 
reporting pattern while the other columns contain the total number of arms for each intervention that belong to those trials

Reporting pattern Trials Placebo Tylosin Virginiamycin - low Virginiamycin - high

H, (A− and A), A+ 4 4 4 0 0

H, A−, A, A+ 16 16 12 4 4

H, (A− and A and A+) 10 10 6 3 4

Table 2  Estimates of thedk ,m on the log-odds ratio (LOR) scale. Interventions are compared to placebo. Point estimates are posterior 
means and central 95% credible intervals are also reported. Estimates and credible intervals are also presented on the odds ratio (OR) 
scale to assist with interpretation

Intervention Level Estimate (LOR) 95% CI (LOR) Estimate (OR) 95% CI (OR)

Tylosin - long A− to H − 0.850 (− 1.022, − 0.682) 0.427 (0.360, 0.506)

Tylosin - long A to A− − 0.147 (− 0.416, 0.121) 0.863 (0.660, 1.129)

Tylosin - long A+ to A − 0.296 (− 0.543, − 0.041) 0.744 (0.581, 0.959)

Virginiamycin - low A− to H 0.001 (− 0.364, 0.360) 1.001 (0.695, 1.434)

Virginiamycin - low A to A− − 0.305 (− 0.918, 0.295) 0.737 (0.399, 1.343)

Virginiamycin - low A+ to A 0.351 (− 0.183, 0.891) 1.420 (0.833, 2.437)

Virginiamycin - high A− to H − 0.511 (− 0.840, − 0.162) 0.600 (0.432, 0.850)

Virginiamycin - high A to A− 0.077 (− 0.470, 0.613) 1.080 (0.625, 1.845)

Virginiamycin - high A+ to A − 0.334 (− 0.814, 0.146) 0.716 (0.443, 1.157)
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The simulation results for the first scenario are dis-
played in Table 3. We see that the magnitude of the biases 
is relatively small and consistent across each of the com-
parative effect parameters. Given the lack of available 
data with which to estimate the trial-specific baseline 
parameters in some trials, some bias is expected as pos-
terior draws for the baseline parameters that fall far from 
the true values will inevitably affect the estimation of the 
comparative effects. The use of more informative priors 
for the trial-specific baseline parameters as described 
in the “Prior specification”  section helps limit the bias 
relative to using non-informative priors. The RMSEs are 
somewhat large due to the limited amount of data avail-
able to estimate many of these comparisons, particularly 
for those involving either of the virginiamycin regimens. 
As we will see in the simulation results for the second 
scenario, the magnitude of the RMSEs can be reduced if 
more data is available. Finally, it is clear that the proposed 
model achieves coverage probabilities close to the nomi-
nal value.

Scenario II
For the second scenario, the simulation procedure is 
identical to that used in the first except that in step (3), 
each trial in the existing network is used to generate data 
for ten separate trials rather than one. We thus gener-
ate datasets that are ten times as large as those under the 
first scenario. Results of the simulations under the sec-
ond scenario are available in Table 4. Note that the biases 
are of similar magnitude to those seen under the first 
scenario. While the datasets are ten times as large, there 
are also ten times as many trials, and thus we have not 
circumvented the issue brought on by the trial-specific 
baseline parameters that was noted in the first scenario. 
However, the magnitude of the RMSEs is substantially 
reduced, including those corresponding to compara-
tive effects involving the virginiamycin interventions. It 

is worth noting here that the coverage probabilities are 
slightly lower than in the previous scenario. Since more 
data is available to estimate each of these comparisons, 
the credible intervals are narrower. In conjunction with 
the slight bias introduced through the trial-specific base-
line parameters, the narrower intervals result in the true 
values falling outside of the given bounds at a higher 
rate.

Discussion
In this paper we proposed a fixed effect multinomial 
NMA model for an ordinal outcome that allows for mul-
tiple outcome categorizations within a network. The pro-
posed model is a modification of that presented in [5] 
for an unordered categorical outcome. These models are 
particularly useful when working with sparse networks, 
which are commonly encountered and can affect the 
quality of comparative effect estimates in terms of both 
precision and power. Because the models simultaneously 
accommodate trials with different outcome categoriza-
tions, they allow for the consideration of all available data 
in the estimation of the comparative effects. Practition-
ers can therefore avoid contributing to the sparsity of the 
network by excluding valuable information.

Furthermore, when working with an ordinal outcome, it 
is often desirable to compare interventions in such a way 
that the ordering is recognized. While it would be pos-
sible to use the method of [5] to analyze a network with 
an ordinal outcome, the resulting comparative effects 
would not directly recognize the ordinality. The adja-
cent-categories logit link incorporates the ordering into 
the comparative effect parameters and is an appropriate 
choice in many applications. It is possible to back out 
the adjacent-category comparative effect estimates from 
those of the baseline-category model through the rela-
tionship between the two logit functions [3], but includ-
ing the adjacent-category comparative effects directly in 

Table 3  Simulation results for scenario I (30 trials). Properties of 
estimates of the basic comparative effect parameters on the log-
odds ratio scale. Interventions are compared to placebo

Intervention Level True value Bias RMSE Coverage 
probability

Tylosin - long A− to H − 0.850 − 0.013 0.085 0.946

Tylosin - long A to A− − 0.147 − 0.017 0.134 0.950

Tylosin - long A+ to A − 0.296 0.012 0.125 0.951

Virginiamycin - low A− to H 0.001 − 0.028 0.178 0.953

Virginiamycin - low A to A− − 0.305 0.024 0.315 0.948

Virginiamycin - low A+ to A 0.351 − 0.010 0.288 0.950

Virginiamycin - high A− to H − 0.511 − 0.031 0.161 0.951

Virginiamycin - high A to A− 0.077 0.046 0.269 0.949

Virginiamycin - high A+ to A − 0.334 − 0.028 0.247 0.950

Table 4  Simulation results for scenario II (300 trials). Properties of 
estimates of comparative effect parameters on the log-odds ratio 
scale. Interventions compared to placebo

Intervention Level True value Bias RMSE Coverage 
probability

Tylosin - long A− to H − 0.850 − 0.008 0.027 0.943

Tylosin - long A to A− − 0.147 − 0.020 0.047 0.925

Tylosin - long A+ to A − 0.296 0.011 0.041 0.940

Virginiamycin - low A− to H 0.001 − 0.020 0.059 0.936

Virginiamycin - low A to A− − 0.305 0.035 0.103 0.934

Virginiamycin - low A+ to A 0.351 − 0.027 0.093 0.940

Virginiamycin - high A− to H − 0.511 − 0.027 0.056 0.922

Virginiamycin - high A to A− 0.077 0.046 0.094 0.918

Virginiamycin - high A+ to A − 0.334 − 0.027 0.081 0.938
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the model makes specifying priors, conducting inference, 
and optimizing estimation more straightforward.

As with any method, there are some limitations that 
are important to keep in mind. While the simulations 
showed that the estimates of the comparative effects 
behave reasonably well, the lack of data with which to 
estimate some of the trial-specific baseline parameters 
introduces some bias that is not eliminated as sample size 
increases (see Tables  3 and 4). An empirical approach 
to specifying informative priors for these trial-specific 
baseline parameters was used in an attempt to keep the 
bias small. This approach limits the bias relative to using 
non-informative priors but could potentially be opti-
mized even further. It is important to note that there is 
then a potential trade-off between limiting sparsity and 
introducing bias that comes with allowing for multiple 
outcome categorizations. It is possible that the standard 
multinomial NMA model could be the better choice for 
some networks with sizable amounts of data.

It is also important to ensure that the estimation proce-
dure behaves as intended. Even with sensibly chosen pri-
ors and starting values, the complexity of NMA models 
can make estimation through MCMC difficult. For exam-
ple, in the second simulation scenario, the adaptation 
phase run by JAGS was not completed for many of the 
generated datasets even after 25,000 iterations. Adapta-
tion can affect the behavior of the samplers employed by 
JAGS. Care therefore needed to be taken to ensure that 
the chains were run long enough such that mixing and 
convergence were achieved and effective sample sizes 
were reasonably high.

Finally, additional developments not implemented here 
can increase the utility of the proposed method. For exam-
ple, the proportional odds assumption, which states that 
the comparative effect parameters for a given intervention 
are the same across the different level pairings, could be 
reasonable for some applications with ordinal outcomes. 
The assumption exploits the ordinality of the outcome to 
reduce the number of parameters included in the model 
[3]. However, it is a strong assumption to make and the 
researchers would need to be sure that it is appropriate for 
a given level pairing before implementing it. The develop-
ment of a procedure to determine if the proportional odds 
assumption is appropriate under the adjacent-categories 
logit link function would allow for its incorporation into 
the proposed model. In addition, the proposed model 
could be extended through the use of other link functions. 
For example, the cumulative logit link might be of interest 
for a given application and could be used if the propor-
tional odds assumption was determined to be appropri-
ate for that structure. An extension allowing for random 
intervention effects could also improve the fit of the pro-
posed method for many networks.

Conclusions
In conclusion, we have proposed a multinomial NMA 
model for ordinal outcomes that can simultaneously han-
dle multiple outcome categorizations, thereby ensuring 
that data from all of the trials included in a network can 
be used during estimation. The use of the adjacent-cate-
gories logit link incorporates the ordering of the outcome 
into the comparative effect parameters, and simulations 
showed that the model generally performs well with 
respect to estimation. The inclusion of the general form 
of the modified multinomial likelihood that allows for 
any combination of levels and R functions linked to 
below that can be used to implement the method should 
allow for its use in a wide range of applications. Moreo-
ver, there is substantial room for further development 
that can take fuller advantage of the ordinality of the out-
come through the proportional odds assumption and the 
utilization of additional link functions.
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