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Abstract 

Background Breast cancer incidence has been on the rise significantly in the Asian population, occurring at an ear-
lier age and a later stage. The potential predictive value of molecular subtypes, biomarkers, and genetic variations 
has not been deeply explored in the Asian population. This study evaluated the effect of molecular subtype classifi-
cation and the presence or absence of biomarkers and genetic variations on pathological complete response (pCR) 
after neoadjuvant treatment in Asian breast cancer patients.

Methods A systematic search was conducted in MEDLINE (PubMed), Science Direct, Scopus, and Cochrane Library 
databases. Studies were selected if they included Asian breast cancer patients treated with neoadjuvant chemother-
apy and contained data for qualitative or quantitative analyses. The quality of the included studies was assessed using 
the Newcastle Ottawa Scale. Following the random effects model, pooled odds ratios or hazard ratios with 95% confi-
dence intervals for pCR were analysed using Review Manager Software. Heterogeneity between studies was assessed 
using Cochran’s Q-test and I2 test statistics.

Results In total, 19,708 Asian breast cancer patients were pooled from 101 studies. In the neoadjuvant setting, 
taxane-anthracycline (TA) chemotherapy showed better pCR outcomes in triple-negative breast cancer (TNBC) 
(p<0.0001) and human epidermal growth factor receptor 2 enriched (HER2E) (p<0.0001) than luminal breast can-
cer patients. Similarly, taxane-platinum (TP) chemotherapy also showed better pCR outcomes in TNBC (p<0.0001) 
and HER2E (p<0.0001). Oestrogen receptor (ER)-negative, progesterone receptor (PR)-negative, HER2-positive 
and high Ki-67 were significantly associated with better pCR outcomes when treated with either TA or TP. Asian breast 
cancer patients harbouring wildtype PIK3CA were significantly associated with better pCR outcomes when treated 
with TA in the neoadjuvant setting (p=0.001).

Conclusions In the neoadjuvant setting, molecular subtypes (HER2E and TNBC), biomarkers (ER, PR, HER2, HR, Ki-67, 
nm23-H1, CK5/6, and Tau), and gene (PIK3CA) are associated with increased pCR rates in Asian breast cancer patients. 
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Hence, they could be further explored for their possible role in first-line treatment response, which can be utilised 
to treat breast cancer more efficiently in the Asian population. However, it needs to be further validated with addi-
tional powered studies.

Systematic review registration PROSPERO CRD42021246295.

Keywords Breast cancer, Molecular subtypes, Biomarkers, Genetic variation, Neoadjuvant treatment, Pathological 
complete response, Asian patients, Systematic review

Background
Breast cancer is one of the most prevalent and heteroge-
neous cancers that predominantly affect women. Accord-
ing to GLOBOCAN 2020 [1], 2.3 million women were 
diagnosed with breast cancer, and 685,000 had died from 
the disease. This is a trend expected to rise due to early 
screening and detection [1]. Early diagnosis of the dis-
ease and effective treatment are paramount to improve 
patients’ condition, mortality, survival outcome, and 
prognosis [2].

Biomarkers are utilised to determine the type of sys-
temic treatment to be administered to cancer patients 
[3]. Biomarkers can be genetic and non-genetic; they can 
be detected through gene sequencing and conventional 
immunohistochemistry (IHC). Clinically, gene sequenc-
ing is not always readily available compared to the 
assessment of IHC for the biomarkers. The most defined 
therapeutic molecular classification of breast cancer is 
based on the status of oestrogen receptors (ER), proges-
terone receptors (PR), human epidermal growth factor 
receptor 2 (HER2), and Ki-67 [4–6]. An extensive molec-
ular classification of breast cancer characterising each 
subtype was first proposed by Perou et  al. [6]. Through 
the expression of 496 intrinsic genes, breast cancer clas-
sification was subgrouped as luminal, HER2+, normal-
like, and basal-like [6]. Subsequently, the luminal subtype 
was further subgrouped into luminal A, luminal B, and 
luminal C [7]. After re-evaluation, the luminal subtype 
was reduced to luminal A and luminal B [8]. Despite the 
advances in molecular subtyping, the St. Gallen Consen-
sus allows IHC assessment of ER, PR, HER2, and several 
biomarkers as a surrogate classification for the molecular 
subtype of breast cancer. The panel agreed to molecu-
larly characterise the subtypes as luminal A, luminal B, 
HER2-enriched (HER2E), and triple-negative breast can-
cer (TNBC) [5].

Biomarkers offer a wide range of potential uses in 
cancer, including risk assessment, screening, differen-
tial diagnosis, prognosis, treatment outcome prediction, 
and monitoring disease progression [9]. Biomarkers can 
be prognostic or predictive; the former allows insight 
into the overall cancer outcome of the patient regardless 
of the therapy given, while the latter provides informa-
tion on whether a patient will benefit from a particular 

treatment [10]. Consequently, this allows the discern-
ment of aggressive and non-aggressive breast cancer, 
especially in later stages. Due to this, biomarkers remain 
an area that is actively under investigation and validation 
[11]. The role of ER, PR, HER2, and Ki-67 in breast can-
cer remains important as biomarkers, nevertheless there 
are other expressions worth investigating. Amongst the 
investigated biomarkers include Tau, nm-23-H1, CK5/6, 
and epidermal growth factor receptor (EGFR) [12]. In 
this study, we defined these IHC-expressed markers as 
biomarkers.

Despite not being clinically available in most countries, 
nowadays, genetic biomarkers (henceforth referred to as 
genetic variations in this study) have gained significant 
interest in oncology practice, as they can be used for 
targeted treatment selections [13]. The variation in the 
genetic component is understood as the changes in the 
DNA sequence in an individual’s genome, which occurs 
at different frequencies within an individual across the 
population [13]. Genetic variations can exist in various 
forms, such as single-nucleotide polymorphism (SNP), 
short insertions or deletions, large mutations, null alleles, 
and transposable elements [13]. Some of the commonly 
mutated genes associated with breast cancer include 
TP53, PIK3CA, BRCA1, and BRCA2 [14]. Consequently, 
these genetic variations have been reported to affect drug 
metabolism and disease susceptibility [15].

The emergence of personalised and precision medicine 
(PPM) is thought to be a better-fit therapeutic approach 
for oncology. Separately, precision medicine is defined as 
a therapeutic approach based on selecting definite bio-
markers that predict a targeted therapy’s efficacy in a spe-
cific group of patients. Although the term personalised 
medicine is often interchangeably used as its synonym, 
it refers to the justification of the therapeutical choices 
for each patient [16]. Hence, it provides an opportunity 
to offer a better-fit treatment tailored to each patient, fit-
ting the discovery that not all cancer is the same and var-
ies heavily in each individual depending on their genetic 
changes [17, 18]. In this study, we used both precision 
and personalised terms and defined PPM as an emerging 
practice of medicine that uses an individual’s genetic pro-
file, derived from their disease diagnosis, which includes 
molecular subtypes, biomarkers, and genetic variations, 
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to guide decisions made concerning their therapeutic 
approach or choice.

The efficacy of cancer treatment can be evaluated 
through pathological complete response (pCR), disease-
free survival (DFS), and overall survival (OS) [19]. pCR, 
defined as the absence of any residual disease in the 
breast and lymph nodes, can be used to predict DFS 
and OS since it is typically used as an endpoint for novel 
neoadjuvant chemotherapy (NAC) to predict the thera-
peutic outcome in the long run [19]. In this study, we 
emphasised the attainment of pCR following NAC as the 
focused efficacy outcome.

Classifying breast cancer based on molecular subtypes 
is a growing clinical practice that warrants benefits [2, 
20, 21] and it is primarily conducted in the West [22, 23]. 
There is limited information on this practice in the Asian 
population [24]. Breast cancer incidence in the Asian 
population occurs at an earlier age with later stages com-
pared to the Western population [25]. Furthermore, there 
are differences in the genetic polymorphism, epigenetics, 
and environmental interplay, which may cause treatment 
outcomes to differ [25, 26]. Therefore, it is imperative to 
evaluate the association between breast cancer diagnoses 
and their response to treatment. This systematic review 
and meta-analysis aimed to assess the involvement of 
PPM in breast cancer treatment in the Asian popula-
tion by evaluating the association between breast cancer 
treatment response, specifically pCR and NAC treatment 
provided to breast cancer patients based on their breast 
cancer molecular subtypes, biomarkers, and genetic vari-
ation characterisation.

Methods
Study design
This study protocol was registered at PROSPERO 
(CRD42021246295). The systematic review was con-
ducted following the Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses (PRISMA)-2020 
checklist guideline (Additional file 1) [27].

Inclusion and exclusion criteria
The type of studies included in this review consists of 
randomised trials, observational studies, case-control 
studies, and cohort studies written in the English lan-
guage. All Asian breast cancer aged ≥ 18 years, who 
underwent systemic neoadjuvant chemotherapy treat-
ment reporting the involvement of somatic genetic 
polymorphisms or biomarkers or molecular subtype 
classification on breast cancer treatment response were 
included. Studies were excluded if one or more of the fol-
lowing reasons were met: (1) non-Asian breast cancer 
cohort studies or non-breast cancer patients; (2) breast 

cancer patients undergoing other treatment that is not 
related to drug, i.e., radiotherapy, herbal medicine, and 
surgery; (3) studies with incomplete data for qualitative 
and/or quantitative synthesis.  Fig. 1 shows how the stud-
ies were searched and identified in the various databases 
and registers.

Literature searches
The search was electronically performed in the MED-
LINE (PubMed), Science Direct, Scopus, and Cochrane 
Library databases to retrieve articles that studied the role 
of molecular subtypes, biomarkers, and genetic varia-
tions in the outcome of breast cancer patients undergo-
ing chemotherapy. Search terms were constructed based 
on patients, interventions and comparison, and out-
comes (Additional file 2). The search term strategies were 
adapted for different databases utilising a combination 
of Medical Subject Heading (MeSH) and keywords that 
are relevant which can be found in the titles and abstract. 
Articles available from 1st January 2000 to 31st March 
2021 were searched on MEDLINE, Science Direct, Sco-
pus and the Cochrane Library. The search strategy was 
conducted from 24th March 2021 to 31st March 2021, 
with the finalised MeSH terms and search strategies were 
run again and harvested on the 31st of March 2021 to 
ensure the same results were generated. The search strat-
egy can be found in detail for MEDLINE (Supplementary 
Table  2.2 in Additional file  2), Science Direct (Supple-
mentary Table 2.3 in Additional file 2), Scopus (Supple-
mentary Table 2.4 in Additional file 2), and the Cochrane 
Library (Supplementary Table 2.5 in Additional file 2).

Data extraction
The retrieved search results were uploaded to Rayyan 
[28] for automated detection of duplicate records after 
manual removal with Mendeley, followed by initial eli-
gibility screening of the abstracts and titles, applying the 
inclusion and exclusion criteria. The full-text articles for 
the remaining abstracts were retrieved and read for eligi-
bility screening, applying the same inclusion and exclu-
sion criteria. Two independent reviewers (NWSB and 
SNIM) conducted the eligibility screening. Any conflict 
was resolved by a third independent reviewer (AM). The 
included studies were randomly distributed amongst 
three independent reviewers (NWSB, SNIM, and AM) to 
extract relevant data using a standardised data extraction 
format using Microsoft Excel (Additional file 3).

For each study, the extracted parameters include the 
article information (article title, first author, year pub-
lished, journal published, country, and year of recruit-
ment), study design, study population and sample size, 
characteristics of patients in three variables (molecu-
lar subtypes, biomarkers, and genetic variations), 
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and the pCR data in selected variables. Notably, in 
the absence of molecular subtype classification in the 
included studies, whenever possible, they were approx-
imated through the available biomarkers detected 
through IHC data [5]. In this study, the molecular 

subtype classification is defined as luminal A (ER+, 
PR+, HER2−, and low Ki-67), luminal B (ER+, PR+, 
HER2+/HER2−, and high Ki-67), HER2E (ER−, PR−, 
and HER2+), and TNBC (ER−, PR−, and HER2−). 
Due to limited resources, the same reviewers (NWSB, 

Fig. 1 The PRISMA flowchart of literature search and study eligibility strategy
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SNIM, and AM) checked the data extraction process. 
Each reviewer is assigned a different article from the 
one they extracted in the previous stage. Notably, the 
reference lists of all selected publications and review 
articles were checked to identify further eligible stud-
ies missed in the MEDLINE (PubMed), Science Direct, 
Scopus, and Cochrane Library search.

All extracted data from selected parameters which 
include the study ID, country, quality assessment 
score, molecular subtypes, number of patients, num-
ber of pCR events in breast cancer patients treated with 
each NAC treatment, and crude and adjusted reported 
pCR association were combined and evaluated by the 
reviewer (NWSB) using standardised data synthe-
sis excel sheets (Additional file  4). Two independent 
reviewers (SNIM and AM) cross-checked the synthe-
sised data.

Risk of bias in individual studies
The quality of all included studies was appraised inde-
pendently by two reviewers (NWSB and SNIM) using 
a quality score system based on the Newcastle-Ottawa 
Scale (NOS) adapted for case-control studies or cohort 
studies (Additional file  5), with scores ranging from 0 
(lowest) to 9 (highest). NOS utilised three domains: (1) 
selection, (2) comparability, and (3) exposure for case-
control studies or outcomes for cohort studies [29]. The 
selection domain of case-control studies was appraised 
based on the description of study subjects and setting, 
while the exposure domain was appraised based on expo-
sure measurement. Comparatively, the selection domain 
of cohort studies was appraised based on the descrip-
tion of study subjects and settings as well as the exposure 
measurement. The outcome domain was appraised by 
the outcome and follow-up assessment. The comparabil-
ity domain of both case-control and cohort studies was 
appraised based on study design, analysis, and character-
isation. Studies with an overall score of 0–3 were consid-
ered low quality, 4–5 were deemed medium quality, and 
6 or above were regarded as high quality. Any discrepan-
cies were resolved by consensus.

Data analysis and synthesis
Data analysis was done using Review Manager Software 
(RevMan version 5.4.1) [30]. The odds ratio (OR), haz-
ards ratio (HR), and their corresponding 95% confidence 
interval (95% CI) were assessed to evaluate the associa-
tion between treatment response (pCR) and NAC treat-
ment provided to breast cancer patients based on their 
molecular subtypes, biomarkers, and genetic variations. 
The strength of associations was estimated by calculating 
pooled ORs/HRs and 95% CIs, by which significance was 

stated using the p-value. A p-value <0.05 was considered 
statistically significant.

Two methods provided in RevMan were used. The 
first method utilises dichotomous outcomes parameters 
to measure the OR depicting the association between 
pCR and selected variables using the Mantel-Haenszel 
method [31] under the random effect model. The second 
method utilises the inverse-variance approach to evalu-
ate the studies’ pooled association data, included under 
the random effects model using the DerSimonian and 
Laird method [32]. The preference for the favoured vari-
able significantly associated with treatment response was 
based on the most frequent report in the pooled included 
studies (Supplementary Table  4.6 in Additional file  4). 
In any case of discordance of the 95% CI value entered 
intoRevMan obtained from the study, the software-gen-
erated value was used. Both crude and adjusted results 
were included in the analysis when available. For both 
methods, whenever possible or required, subgroup analy-
sis was conducted. By convention, a pooled OR/HR <1 
represents a worse treatment response, while a pooled 
OR/HR >1 represents a better treatment response for 
breast cancer patients.

Meta‑bias assessment
The between-study heterogeneity was assessed by 
Cochran’s chi-square-based Q-test and I2 index. It is con-
sidered statistically significant when p-value <0.05 and/
or I2 index >50% [33]. The publication bias assessment 
was done when at least six studies were pooled for meta-
analysis. The evaluation was made through visual inspec-
tion of funnel plot asymmetry and fail-Safe N test using 
the Rosenthal approach. Rank correlation and regression 
tests, using the standard error of the observed outcomes 
as predictors, are also used to check for funnel plot 
asymmetry.

Results
Article selection
A total of 8963 records were identified using different 
databases  including MEDLINE, PubMed, ScienceDi-
rect, Scopus and Cochrane Library. In total, 2284 records 
were excluded because of duplication, the removal was 
conducted through both manual removal and using an 
automation tool known as Rayyan. Then  6564 records 
were excluded after the initial title and abstract screen-
ing due to unmet inclusion criteria. Of the remaining 115 
records, the full-text articles were carefully read, and 14 
records were excluded due to insufficient pCR data and 
inaccessibility. Finally, 101 studies fulfilled the eligibility 
criteria and were included in the systematic review and 
meta-analysis (Fig. 1).
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Overview of included studies
Altogether, 19,708 Asian breast cancer patients were 
gathered from the 101 studies, with an average of 195 
patients per study (Supplementary Table  4.1 in Addi-
tional file 4). The study population comprised 91 studies 
from Eastern Asia (China [8, 12, 34–115], Hong Kong 
[116, 117], Korea [118], and Japan [119–122]), 7 stud-
ies from Western Asia (Egypt [123], Iran [124], Turkey 
[125, 126], and Saudi Arabia [127–129]), 2 studies from 
Southeast Asia (Indonesia [130], Singapore and Malay-
sia [131]), and 1 study from South Asia (India [132]). The 
recruitment period for the patients enrolled in the stud-
ies ranged from 1991 to 2020. Most of the study cohorts 
followed hospital-based study design (76.2%) and clini-
cal trials (14.9%), while 8.9% were not reported. 61.3% 
of the hospital-based study designs were conducted in 
unicenter, while 14.9% were in multicenter. Of the 101 
studies, only 65 studies provided molecular subtype data 
(n=11361) - TNBC (29.2%), HER2E (20.7%), luminal B 
(13.2%), and luminal A (7.2%), while 1.6% were missing. 
Several studies did not categorise their luminal subtype 
into luminal A or B. Hence, they were reported as lumi-
nal-like (24.9%) in this study. Only 69 studies provided 
data on biomarkers, comprising the routinely analysed 
biomarkers—ER (25.1%), PR (25.1%), HR (5.7%), HER2 
(27.4%), and Ki-67 (15.5%)—and several non-conven-
tional biomarkers investigated specifically for the study 
including EGFR (11.0%), CK5/6 (8.0%), Tau (11.7%), 
Androgen Receptor (AR) (8.6%), PDL1 (3.6%), P-gly-
coprotein (P-gp) (3.3%), DNA topoisomerase II-alpha 
(TopoIIa) (3.2%), p53 (9.8%), and others (0.8–4.0%) (Sup-
plementary Table 3.1 in Additional file 3). Meanwhile, 7 
studies provided information on genetic variations and 
differential expression, where the common genetic varia-
tions reported were from TP53 (15.7%), PIK3CA (24.6%), 
MYC (5.8%), ERRB2 (5.8%), CCDN1 (5.8%), BRCA1 
(15.7%), BRCA2 (15.7%), and others (10.9%).

All the patients in the studies received NAC, and 25.0% 
of patients received follow-up adjuvant therapy. Collec-
tively, NAC taxane-anthracycline (TA), taxane-platinum 
(TP), and taxane-anthracycline-platinum (TAP) com-
bination were mentioned in 41.5%, 18.6%, and 1.5% of 
the studies, respectively. Meanwhile, 18.3% were treated 
with NAC anthracycline-based chemotherapy, 14.0% 
were treated with NAC taxane-based chemotherapy, 
and 8 studies did not provide specific treatment infor-
mation. Some patients were treated concomitantly with 
targeted therapy and endotherapy (23.0%). The defini-
tion of pCR used in the included studies was mostly not 
reported according to any guideline (71.3%), with only 
28.7% reported pCR following the Miller-Payne grading 

(17.8%), Kuerer et  al. (1.9%), RECIST (2.9%), and other 
grading systems (6.1%) including the Ribero classifica-
tion, Japanese Breast Cancer Society v2007, USFDA 
guideline, WHO criteria, and pathological TNM system.

Furthermore, 33 of the included studies conducted 
the multivariate analysis. Most of the included variables 
used to adjust the multivariate analysis were the com-
monly reported biomarkers (ER, PR, HER2, and Ki-67), 
age, tumour size and grade, age at diagnosis, lymph node 
stage, histological grade, body mass index (BMI), chemo-
therapy regimens, chemotherapy cycles, and other bio-
markers and genetic variations unique to the study.

Quality of the included studies
The quality assessment of the studies was presented in 
Supplementary Tables  6.1 and 6.2 (Additional file  6). 
Fourteen (14) case-control studies and 87 cohort studies 
were included in our systematic review. NOS scores for 
the 87 cohort studies ranged from 5 to 9 stars, and NOS 
scores for the 14 case-control studies ranged from 4 to 9 
stars. No study was excluded since all studies scored ≥4 
stars.

A summary of the risk of bias assessed on each ques-
tion using the NOS for cohort and case-control studies 
is shown in Supplementary Figures  6.1 and 6.2 (Addi-
tional file  6). We considered both breast cancer treat-
ment and characterisation as the most important factors 
for adjustment in the comparability domain because 
our study eligibility criteria required adjustment for the 
involvement of somatic genetic polymorphisms or bio-
markers or molecular subtypes in breast cancer treat-
ment response. Following this consideration, only 33% 
(n=29/87) cohort studies earned a star for comparability 
regarding pCR and breast cancer treatment, while 94% 
(n=82/87) cohort studies earned a star regarding pCR 
and breast cancer characterisation. As for case-control 
studies, 79% (n=11/14) studies earned a star for com-
parability regarding pCR and breast cancer treatment, 
while 93% (n=13/14) studies earned a star regarding pCR 
and breast cancer characterisation. Notably, when both 
adjustment factors were combined, only 31% (n=27/87) 
cohort studies and 71% (n=10/14) case-control studies 
earned both stars in the comparability domain. Amongst 
the cohort studies, evaluation of the selection of the non-
exposed cohort was the question with the lowest count of 
stars, with only 32% (n=28/87) of the studies having a low 
risk of bias. Meanwhile, amongst the case-control stud-
ies, apart from the first adjustment in the comparability 
domain, the lowest count of stars was for the question 
evaluating the selection of controls, with 79% (n=11/14) 
of studies showing a low risk of bias.
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Association of breast cancer characterisation 
and treatment response
The molecular subtypes classification of breast cancer, 
presence or absence of specific biomarkers, and genetic 
variations in the breast cancer diagnosis can be utilised 
to predict the pCR outcome in patients treated with 
specific chemotherapeutic agents. Five molecular sub-
types, fourteen biomarkers, and eleven genetic variations 
were qualitatively evaluated for their predictive value in 
Asian breast cancer patients (Supplementary Table 4.2.2 
in Additional file  4). Meanwhile, of the 101 studies, 60 
studies provided data that could be used for meta-anal-
ysis (Figs. 2, 3, 4, 5, 6 and 7 in the manuscript and Sup-
plementary Figures 7.1– 7.8 in Additional file 7). All the 
qualitative and meta-analyses results are presented by 
the molecular classification, biomarkers, and genetic 
characterisation of Asian breast cancer patients. Addi-
tionally, meta-analysis results using the Mantel-Haenszel 
method listed under each breast cancer characteristic 
are grouped according to the chemotherapeutic agents. 
Meta-analysis results using the inverse-variance method 
are presented separately since it is pooling the reported 
association data, for which they are presented by the 
breast cancer characteristics as well.

Molecular subtype classification
Qualitatively, most studies with molecular subtype classi-
fication provide data on the pCR rates of patients treated 
with TA and TP regimens. When treated with TP, lumi-
nal A had the lowest pCR rate of 7.7% (n=4), while the 
highest pCR rate was observed in HER2E at 52.4% (n=7). 
In comparison, the pCR rates in the other subtypes were 
32.5% (n=3), 28.1% (n=4), and 41.7% (n=7) for luminal-
like, luminal B, and TNBC, respectively. However, when 
treated with NAC TA, the highest pCR rate was observed 
in TNBC at 30.4% (n=20), and similarly, the lowest pCR 
rate was observed in luminal A at 4.3% (n=5). Com-
paratively, the pCR rates in luminal-like, luminal B, and 
HER2E were 9% (n=6), 12% (n=5), and 27.8% (n=9), 
respectively. Our findings suggest that patients with 
TNBC and HER2E subtypes treated with NAC TP and 
TA were more likely to obtain pCR, while luminal A was 
less likely to obtain pCR with both regimens.

Under meta-analysis, the role of molecular sub-
types was examined in NAC TA-treated (Figure  2 and 

Supplementary Figure  7.1 in Additional file  7) and TP-
treated (Figures 3 and 4 and Supplementary Figure 7.1 in 
Additional file 7) breast cancer patients.

Taxane‑anthracycline (TA) chemotherapy
Our study first compares the effect of HER2E and lumi-
nal subtypes on pCR outcomes in TA-treated patients 
(Fig.  2A–D). In the analysis of four pooled studies [34, 
35, 98, 100] comparing HER2E and luminal-like sub-
types, 494 were identified with HER2E subtype and 764 
patients with luminal-like subtype. Despite the large 
number of patients with luminal-like subtypes, our find-
ings significantly associate patients with HER2E subtypes 
with better pCR outcomes (OR: 4.08; 95% CI; 2.78–6.00; 
p<0.0001; Fig.  2A). When HER2E patients were com-
pared with patients with luminal A subtype, patients 
with HER2E subtypes were also found to be significantly 
more likely to achieve pCR (OR 5.27; 95% CI 1.16–23.86; 
p=0.03; Fig.  2B). Similarly, when HER2E was analysed 
against luminal B, HER2E was significantly associ-
ated with pCR (OR 2.78; 95% CI 1.42–5.44; p=0.003; 
Fig.  2C). To confirm and elucidate the effect of luminal 
subtypes on pCR outcome in NAC TA-treated breast 
cancer patients, we combined all luminal data (luminal-
like, luminal A, and luminal B) as luminal, combined and 
compared it against HER2E patients. Nine studies [34, 35, 
71, 80, 84, 95, 98, 100, 113] were pooled, yet our findings 
still showed that HER2E subtype was significantly associ-
ated with pCR outcome in NAC TA-treated patients (OR 
3.89; 95% CI 2.69-5.64; p<0.0001; Fig. 2D).

Similarly, analyses conducted comparing the effect of 
TNBC and luminal subtypes on pCR outcome in TA-
treated patients (Fig. 2E–H) significantly associate TNBC 
with better pCR outcome compared to luminal-like (OR 
4.45; 95% CI 2.79–7.11; p<0.0001; Fig.  2E), luminal A 
(OR 11.66; 95% CI 3.64-37.38; p<0.0001; Fig.  2F), lumi-
nal B (OR 3.89; 95% CI 2.20–6.87; p<0.0001; Fig.  2G), 
and luminal, combined (OR 4.59; 95% CI 3.35–6.29; 
p<0.0001; Fig. 2H).

To further explore the effect of molecular subtypes 
on the pCR outcome of NAC TA-treated breast cancer 
patients, the TNBC subtype was compared to the HER2E 
subtype revealing that neither was associated with pCR 
(OR 1.17; 95% CI 0.80-1.70; p=0.43; Supplementary 

(See figure on next page.)
Fig. 2 Pooled pCR outcome of TA-treated Asian breast cancer patients according to molecular subtypes. Forest plots describing the random 
effect ORs and 95% CIs from studies assessing the association of pCR outcome in NAC TA-treated breast cancer patients between (A) HER2E 
and luminal-like; (B) HER2E and luminal A; (C) HER2E and luminal B; (D) HER2E and luminal, combined; and (E) TNBC and luminal-like; (F) TNBC 
and luminal A; (G) TNBC and luminal B; and (H) TNBC and luminal, combined. I2 and p-value for X2 of heterogeneity are reported for each group 
analysis
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Fig. 2 (See legend on previous page.)
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Fig. 3 Pooled pCR outcome of TP-treated Asian breast cancer patients according to molecular subtypes. Forest plots describing the random 
effect ORs and 95% CIs from studies assessing the association of pCR outcome in NAC TP-treated Asian breast cancer patients between (A) HER2E 
and luminal-like; (B) HER2E and luminal A; (C) HER2E and luminal B; (D) HER2E and luminal, combined; (E) Luminal B and luminal A; (F) TNBC 
and luminal A; (G) TNBC and luminal B. I2 and p-value for X2 of heterogeneity are reported for each group analysis
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Figure  7.1A in Additional file  7). Similarly, an analysis 
between luminal A and luminal B showed that neither 
was associated with better pCR outcome when treated 
with NAC TA (OR 2.47; 95% CI 0.79–7.73; p=0.12; Sup-
plementary Figure 7.1B in Additional file 7).

Taxane‑platinum (TP) chemotherapy
In the analysis pooling three studies [45,64,102] compar-
ing HER2E and luminal-like subtypes, 321 patients were 
identified with HER2E subtype, and 382 patients were 
luminal-like. When treated with NAC TP, neither HER2E 
nor luminal-like patients were associated with pCR (OR 
1.69; 95% CI 0.70–4.11; p=0.25; Fig. 3A). However, in the 
analysis pooling four studies [41, 69, 97, 115] compar-
ing HER2E and luminal A subtypes, HER2E was signifi-
cantly associated with pCR outcome (OR 12.11; 95% CI 
4.41–33.26; p<0.0001; Fig.  3B). Similarly, when compar-
ing against luminal B and luminal, combined, HER2E was 
significantly associated with pCR outcome (OR 5.92; 95% 
CI 2.59–13.54; p<0.0001; Fig.  3C and OR 3.37; 95% CI 
1.66–6.84; p=0.0008; Fig.  3D, respectively). Substantial 
heterogeneity was reported for two of the pooled analy-
ses: (1) in studies comparing HER2E and luminal-like 
(Fig. 3A); and (2) in studies comparing HER2E and lumi-
nal, combined (Fig.  3D). Although all three and seven 
studies pooled in the two analyses were performed in the 
Chinese population, the primary outcome assessed in Li 
et al. [57] and Xu et al. [97] focused on the contribution 
of genetic mutations or long non-coding RNAs (lncR-
NAs) as a predictor of pCR status in the recruited popu-
lation. Consequently, pooled analysis excluding Li et  al. 
eliminates the heterogeneity in the first analysis reveal-
ing significant association (OR 2.30; 95% CI 1.66–3.19; 
p<0.00001), while pooled analysis excluding Li et al. and 
Xu et al. in the second analysis decreased the heterogene-
ity, and maintaining the significant association (OR 3.80; 
95% CI 2.02–7.13; p<0.0001).

Notably, when HER2E and TNBC patients were com-
pared, neither was associated with pCR (OR 1.46; 95% CI 
0.63–3.37; p=0.38; Supplementary Figure  7.1C in Addi-
tional file 7). We then compared luminal B and luminal 
A patients and found that luminal B patients were sig-
nificantly associated with better pCR outcomes (OR 
3.26; 95% CI 1.14–9.26; p=0.03; Fig. 3E). Similar to NAC 

TA-treated patients, analyses conducted comparing the 
effect of TNBC and luminal subtypes on pCR outcome 
in TP-treated patients also significantly associate TNBC 
with better pCR outcome compared to luminal A (OR 
7.14; 95% CI 2.82–18.04; p<0.0001; Fig.  3F), luminal B 
(OR 2.19; 95% CI 1.09–4.41; p=0.03; Fig. 3G), and lumi-
nal, combined (OR 3.79; 95% CI 1.94–7.40; p<0.0001; 
Fig. 4A).

Our study compared the effect of chemotherapeutic 
agents on the pCR outcome in TNBC patients (Fig. 4B). 
Pooled analysis involving two studies [69, 108] showed 
that TNBC patients were significantly more likely to 
achieve pCR when treated with NAC TP (n=25/62) com-
pared to NAC TA (n=7/48) (OR 3.76; 95% CI 1.43-9.87; 
p=0.007).

Biomarkers
Qualitatively, most studies with biomarkers data com-
prise of routinely analysed biomarkers—ER, PR, HER2, 
and Ki-67. In ER− and ER+ patients, anthracycline-
based chemotherapy showed pCRrate of 27.2% (n=4) vs 
15.3% (n=4). Meanwhile, TP, TA, and TAP chemotherapy 
showed pCR rate of 48.1% (n=6) vs 19.4% (n=5), 25.0% 
(n=6) vs 9.0% (n=7), and 29.7% (n=1) vs 12.9% (n=1), 
respectively. As for PR− and PR+ patients, anthracy-
cline-based, TP, TA, and TAP chemotherapy showed 
pCR rate of 28.3% (n=2) vs 13.9% (n=2), 46.6% (n=5) vs 
21.8% (n=5), 20.6% (n=4) vs 8.2% (n=4), and 25% (n=1) 
vs 13.3% (n=1), respectively. Collectively, ER− and PR− 
breast cancer patients were likely to benefit more from 
TP regimen than TA, TAP, and anthracycline-based 
chemotherapy. Notably, some studies combined their 
report of ER and PR as hormone receptors (HR). Analy-
sis of HR+ and HR− patients showed pCR rate of 11.9% 
(n=1) vs 10% (n=1), 33.1% (n=2) vs 49.3% (n=2), 31.3% 
(n=2) vs 50.7% (n=3), and 12.4% (n=5) vs 23.2% (n=5) 
when treated with anthracycline-based, taxane-based, 
TP, and TA chemotherapy, respectively. Our findings 
suggested that HR+ breast cancer patients achieved a 
better pCR rate when treated with a single-based chemo-
therapeutic agent, while HR− patients benefit more com-
bination chemotherapy regimens.

In HER2+ and HER2− patients, anthracycline-based 
chemotherapy showed pCR rate of 10.5% (n=3) vs 19.3% 

(See figure on next page.)
Fig. 4 Pooled pCR outcome of NAC-treated Asian breast cancer patients according to molecular subtypes and biomarkers. Forest plots describing 
the random effect ORs and 95% CIs from studies assessing the association of pCR outcome in (A) NAC TP-treated Asian breast cancer patients 
between TNBC and luminal, combined; (B) between Asian TNBC patients treated with NAC TP and TA; Asian breast cancer patients treated 
with anthracycline-based chemotherapy with (C) ER; (D) PR; and (E) HER2 biomarkers; (F) Asian breast cancer patients treated with taxane-based 
chemotherapy and HR biomarker; (G) Asian breast cancer patients treated with TA and ER biomarker. I2 and p-value for X2 of heterogeneity are 
reported for each group analysis
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Fig. 4 (See legend on previous page.)
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Fig. 5 Pooled pCR outcome of TA-treated Asian breast cancer patients according to biomarkers. Forest plots describing the random effect ORs 
and 95% CIs from studies assessing the association of pCR outcome in NAC TA-treated breast cancer patients in biomarkers (A) PR; (B) HR; (C) HER2; 
(D) nm23-H1; and (E) CK5/6. I2 and p-value for X2 of heterogeneity are reported for each group analysis
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Fig. 6 Pooled pCR outcome of NAC-treated Asian breast cancer patients according to biomarkers. Forest plots describing the random effect 
ORs and 95% CIs from studies assessing the association of pCR outcome in (A) NAC TA-treated breast cancer patients in biomarkers Ki-67; NAC 
TP-treated breast cancer patients in biomarkers (B) ER; (C) PR; (D) HR; and (E) Ki-67. I2 and p-value for X2 of heterogeneity are reported for each group 
analysis



Page 14 of 31Bahrin et al. Systematic Reviews          (2024) 13:100 

Fig. 7 Pooled pCR outcome of NAC-treated Asian patients according to biomarkers and genetic variation. Forest plots describing the random 
effect ORs and 95% CIs from studies assessing the (A) Association of pCR outcome in NAC TP-treated Asian breast cancer patients in HER2; (B) 
Association between pCR in Asian patients with HER2+ biomarker treated with NAC TP and TA; and (C) Association of pCR outcome in NAC 
TA-treated Asian breast cancer patients in PIK3CA gene. I2 and p-value for X2 of heterogeneity are reported for each group analysis
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(n=4). Meanwhile, TP, TA, and TAP chemotherapy 
showed pCR rate of 44.6% (n=15) vs 24.3% (n=6), 20.1% 
(n=14) vs 11.3% (n=12) and 33% (n=1) vs 13.5% (n=1), 
respectively. One study [44] utilising CDK4/6 inhibitor 
on ER+/HER2− breast cancer patients and another study 
[118] utilising kinase inhibitor on ER+/HER2+ patients 
showed pCR rate of 5% (n=1) and 0% (n=1), respectively. 
Collectively, with the exception of anthracycline-based 
and targeted therapy, HER2+ breast cancer patients were 
likely to benefit more from TP, TA, and TAP regimens. 
Meanwhile, in patients with high and low Ki-67, anthra-
cycline-based and taxane-based chemotherapy showed 
pCR rate of 12.2% (n=1) vs 11.4% (n=1) and 57.1% (n=1) 
vs 32.1% (n=1). When treated with TP and TA chemo-
therapy, the patients showed pCR rate of 39.9% (n=5) vs 
24% (n=5) and 19.9% (n=12) vs 7.7% (n=12), respectively. 
Overall, breast cancer patients with high Ki-67 were 
likely to benefit more from taxane-based chemotherapy 
than TP, TA, and anthracycline-based regimen.

On the other hand, fourteen non-conventional bio-
markers investigated in a few of the included studies 
were evaluated qualitatively. Three biomarkers—Bcl-2, 
Smac, and Survivin—were included for the evaluation 
of anthracycline-based chemotherapy. Anthracycline-
based chemotherapy showed pCR benefit of 26.1% (n=1) 
vs 4.3% (n=1) in Bcl-2- and Bcl2+ breast cancer patients, 
35.0% (n=1) vs 8.6% (n=1) in high and low Smac, and 
28.3% (n=1) vs 11.5% (n=1) in low and high Survivin. 
Only one biomarker—ZEB1—was evaluated for TP 
chemotherapy which revealed pCR rates of 36.1% (n=1) 
in patients with low ZEB1 and 12.8% (n=1) in patients 
with high ZEB1.

Ten biomarkers—Tau, P-gp, Topo-II, T-cadherin, 
CK5/6, EGFR, p53, LAG-3, cyclin D1, and nm23-H1—
were included for the evaluation of TA chemotherapy. 
Our findings showed pCR benefit of 31.3% (n=1) vs 4.5% 
(n=1) in Tau− and Tau+, 43.2% (n=1) vs 7.7% (n=1) in 
P-gp− and P-gp+, and 17% (n=1) vs 3.4% (n=1) in Topo-
II- and Topo-II+ breast cancer patients. The pCR rates 
observed in T-cadherin- and T-cadherin+, CK5/6− and 
CK5/6+, EGFR− and EGFR+, and p53− and p53+ breast 
cancer patients were 45.2% (n=1) vs 7.4% (n=1), 40% 
(n=2) vs 25.6% (n=2), 45.5% (n=1) vs 28.1% (n=1), and 
33.3% (n=1) vs 27.3% (n=1), respectively. As for breast 
cancer patients with low and high expression of LAG-
3, the pCR rates was observed at 64.7% (n=2) vs 35.3% 
(n=2). Lastly, breast cancer patients with cyclin D1+ and 
nm23-H1+ reported pCR benefits of 45.8% (n=1) and 
29.5% (n=2) than 29.4% (n=1) in cyclin D1− and 5.3% 
(n=2) in nm23-H1− breast cancer patients.

Under meta-analysis, the role of biomarkers was 
investigated in NAC anthracycline-based and taxane-
based treated (Fig.  4), TA-treated (Figs.  4, 5  and 6 and 

Supplementary Figure  7.1 in Additional file  7), and TP-
treated (Figs. 6 and 7) breast cancer patients.

Anthracycline‑based and taxane‑based chemotherapy
Four studies [53, 88, 102, 124] were pooled for the effect 
of ER on pCR outcome in anthracycline-treated patients, 
where ER was not associated with pCR (OR 1.95; 95% 
CI 0.98–3.89; p=0.06; Fig.  4C). Substantial heterogene-
ity was reported for the pooled analysis of ER− vs ER+, 
which could be explained by the study by Mohammadi-
anpanah et al. [124] which was conducted in the Iranian 
population. In contrast, the other studies [53, 88, 102] 
were performed in the Chinese population. Subgroup 
analysis of ER− vs ER+ pooling studies in the Chinese 
population only showed that ER− patients were signifi-
cantly associated with pCR (OR 2.52; 95% CI 1.43–4.44; 
p=0.001; Fig.  4C), supporting our hypothesis that the 
observed heterogeneity could be due to the difference 
in the Asian population. Notably, the observed moder-
ate heterogeneity in the subgroup analysis can allude to 
by the differences in the population sizes of the three 
studies. Only two studies [88, 102] were pooled to ana-
lyse PR effect on pCR outcome in anthracycline-treated 
patients. Our findings showed that PR− patients were 
significantly associated with pCR (OR 2.40; 95% CI 
1.52–3.80; p=0.0002; Fig.  4D). Meanwhile, an analysis 
of three pooled studies [88, 102, 109] on the effect of 
HER2 on pCR outcome in anthracycline-treated breast 
cancer patients revealed that patients with HER2− bio-
marker were significantly more likely to achieve pCR 
(OR 2.31; 95% CI 1.42–3.75; p=0.0008; Fig. 4E). Only one 
biomarker, HR, was evaluated for its effect on pCR out-
come in Asian breast cancer patients treated with taxane-
based chemotherapy (Fig. 4F). Two studies [74, 107] were 
pooled where patients with HR− biomarkers were signifi-
cantly more likely to achieve pCR than HR− patients (OR 
1.96; 95% CI 1.24–3.08; p=0.004).

Taxane‑anthracycline (TA) chemotherapy
Eight biomarkers comprising ER, PR, HR, HER2, nm23-
H1, CK5/6, EGFR, and Ki-67 were investigated for their 
effect on pCR outcome in Asian breast cancer patients 
treated with NAC TA. Six studies [45, 49, 52, 77, 81, 
112] and four studies [36, 54, 80, 113] were pooled to 
evaluate the association of ER and PR, respectively. Both 
ER− (OR 3.19; 95% CI 2.15–4.75; p<0.0001; Fig. 4G) and 
PR− (OR 3.11; 95% CI 2.12-4.56; p<0.0001; Fig. 5A) were 
significantly associated with pCR outcome in TA-treated 
patients. Moderate heterogeneity was reported for the 
pooled analysis of ER− vs ER+. However, considering 
all the studies pooled for the analysis were performed 
in the Chinese population, the heterogeneity result was 
rejected.
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In an analysis pooling five studies [60, 81, 98, 100, 127], 
HR was not associated with pCR outcome (OR 2.38; 95% 
CI 0.87–6.53; p=0.09; Fig.  5B). The observed substan-
tial heterogeneity could be due to the study by Elnemr 
et  al. [127] conducted in Saudi Arabia, while the other 
four studies were performed in China. Consequently, 
subgroup analysis of HR− vs HR+ removing the study 
by Elnemr et al. showed a decrease in the heterogeneity 
and significantly associated HR− with better pCR out-
come when treated with TA (OR 3.58; 95% CI 1.62–7.90; 
p=0.002). An analysis of nine pooled studies [36, 54, 60, 
80–82, 100, 113, 127] showed that HER2+ is significantly 
associated with pCR (OR 1.78; 95% CI 1.05–3.02; p=0.03; 
Fig. 5C) with substantial heterogeneity observed between 
the studies. Although the analysis also includes the study 
by Elnemr et  al., which was conducted in Saudi Arabia, 
the heterogeneity could be influenced by the results 
pooled from seven studies that heavily pushed the effect 
of our analysis in one direction.

Our study synthesised meta-analysis data for other bio-
markers apart from the commonly reported ones—ER, 
PR, HR, and HER2. In particular, two studies were evalu-
ated for pCR outcome for nm23-H1 [12, 60] and CK5/6 
[12, 90]. It was observed that nm23-H1− (OR 6.74; 95% 
CI 2.13–21.30; p=0.001; Fig. 5D) and CK5/6– (OR 1.87; 
95% CI 1.03–3.39; p=0.04; Fig. 5E) are significantly asso-
ciated with pCR. Two studies [12, 90] were pooled for 
analysis in the evaluation of pCR outcome with EGFR. 
Considerable heterogeneity was observed between 
the studies, perhaps alluded to the clinical differences 
between the studies of Li et al. [12] (n=22/41) and Wang 
et  al. [90] (n=170/195) according to the distribution of 
patients with EGFR+. Despite that, EGFR is not associ-
ated with pCR outcome in TA-treated patients (OR 2.02; 
95% CI 0.28–28.00; p=0.38; Supplementary Figure  7.1D 
in Additional file 7).

The proliferation index biomarker, Ki-67, was evalu-
ated through an analysis of 12 pooled studies [12, 36, 54, 
60, 80, 84, 90, 95, 98, 100, 111, 127], revealing significant 
association between pCR outcome and high Ki-67 (OR 
2.98; 95% CI 1.79–4.97; p<0.0001; Fig. 6A). The observed 
moderate heterogeneity between the studies could be 
due to differences in the Ki-67 cut-off value. Subgroup 
analysis pooling four studies [36, 84, 111, 127] with 14% 
Ki-67 cut-off did not significantly associate Ki-67 with 
pCR outcome (OR 1.82; 95% CI 0.65–5.10; p=0.26). 
Significant heterogeneity was observed which could be 
explained by the primary research question addressed in 
the studies where Zhang et al. [111] focused on the prog-
nostic value of magnetic resonance imaging (MRI), P-gp, 
and Ki-67, while the other three studies focused on the 
correlation of Ki-67 expression and pCR. Furthermore, 
the results pooled from the three studies heavily pushed 

the effect of our analysis in one direction. Thus, a pooled 
analysis excluding the study by Zhang et al. reveals null 
heterogeneity between the studies and a significant asso-
ciation between pCR and high Ki-67 with 14% cut-off 
value (OR 3.12; 95% CI 1.93–5.04; p<0.00001). Mean-
while, subgroup analysis pooling five studies [60, 90, 95, 
98, 100] with 20% Ki-67 cut-off significantly associate 
pCR outcome with high Ki-67 (OR 2.88; 95% CI 1.36–
6.10; p=0.006).

Taxane‑platinum (TP) chemotherapy
Our study investigated five biomarkers comprising ER, 
PR, HR, HER2, and Ki-67 on their effect on pCR out-
come in Asian breast cancer patients treated with NAC 
TP. Five studies [41, 43, 97, 114, 115] and two studies 
[100,102] were pooled to evaluate the association of ER 
and PR, and HR, respectively. pCR outcome was signifi-
cantly associated with ER− (OR 4.91; 95% CI 3.20–7.53; 
p<0.00001; Fig.  6B), PR− (OR 3.82; 95% CI 2.48–5.90; 
p<0.00001; Fig.  6C), and HR− (OR 2.71; 95% CI 1.43–
5.15; p=0.002; Fig. 6D).

Ki-67 was evaluated by analysing five pooled studies 
[47, 57, 97, 114, 115], showing that pCR outcome was 
not significantly associated with either high Ki-67 or low 
Ki-67 (OR 2.20; 95% CI 0.74–6.59; p=0.16; Fig. 6E). The 
observed considerable heterogeneity was perhaps due 
to differences in the Ki-67 cut-off value, and four of the 
five studies heavily pushed the effect of our analysis to 
one direction. Subgroup analysis pooling two studies [97, 
114] with 20% Ki-67 cut-off indicates that pCR outcome 
is significantly associated with high Ki-67 (OR 4.37; 95% 
CI 1.62–11.75; p=0.003). This implicates the importance 
of having a standardised cut-off value for Ki-67, as at dif-
ferent cut-offs of 15 and 30%, neither Ki-67 biomarker 
was favoured as opposed to the 20% cut-off favours High 
Ki-67 to achieve pCR.

In the analysis of the effect of HER2 in breast cancer 
patients pooling five studies [41, 43, 97, 114, 115], pCR 
outcome was not significantly associated with neither 
HER2+ nor HER2− (OR 2.44; 95% CI 0.84–7.06; p=0.10; 
Fig.  7A). The observed substantial heterogeneity could 
be influenced by the results pooled from four of the five 
studies that heavily pushed the effect of our analysis in 
one direction. Consequently, a pooled analysis exclud-
ing the study by Zhou et al. [114] reveals null heteroge-
neity between the studies and a significant association 
between pCR and HER2+ (OR 4.14; 95% CI 2.51–6.85; 
p<0.00001).

Our study also evaluated the effect of chemotherapeu-
tic agents on the pCR outcome in Asian breast cancer 
patients with HER2+ biomarker (Fig.  7B). Four studies 
[39, 51, 59, 110] were pooled and estimated. Our findings 
revealed neither NAC TP nor NAC TA was associated 
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with pCR outcome in patients with HER2+ biomarker 
(OR 1.60; 95% CI 0.66–7.06; p=0.30). Substantial heter-
ogeneity was reported which could be explained by the 
difference in the study design of the pooled studies. Of 
the four studies, Huang et al. [51] was the only study that 
conducted a randomised controlled trial (RCT) where the 
recruited HER2+ breast cancer patients were assigned 
to either TA or TP chemotherapy by the investigator. In 
contrast, HER2+ breast cancer patients recruited in the 
other three studies [39, 59, 110] were given either TA or 
TP regimen based on their preferences. Notably, sub-
group analysis excluding Huang et al. decreased the het-
erogeneity I2 and significantly associated HER2+ breast 
cancer patients with better pCR outcome when treated 
with TP (OR 2.36; 95% CI 1.07–5.20; p=0.03).

Genetic variations and differential expression
Eleven genes—PIK3CA, TP53, EPIC1, TOP2A, ERBB2, 
MYC, CCND1, PCDH17, EPIC1, BRCA1, and BRCA2—
were included for the qualitative evaluation of NAC 
regimens. No specific single variant vs wildtype was com-
pared for most of the genes since most of the evaluated 
studies did not report them. Therefore, our analysis only 
compared wildtype (wt) and mutated (mt), where the 
mutated gene might contain single or multiple variants.

Breast cancer patient harbouring wt and mutated 
mtPIK3CA showed pCR rate of 19.4% (n=1) vs 14.1% 
(n=1) and 18.8% (n=1) vs 16.1% (n=1) when treated with 
anthracycline-based and taxane-based chemotherapy, 
respectively. Meanwhile, patients treated with TA chemo-
therapy showed a pCR rate of 21.3% (n=2) vs 9.4% (n=2). 
Thus, breast cancer patients with wtPIK3CA were likely 
to benefit more from TA regimen than anthracycline-
based and taxane-based chemotherapy. Interestingly, 
breast cancer patient harbouring wt and mtTP53 showed 
pCR rate of 7.1% (n=1) vs 28.6% (n=1), 11.3% (n=1) vs 
15.2% (n=1), and 6.1% (n=1) vs 16.1% (n=1) when treated 
with anthracycline-based, taxane-based, and TA chemo-
therapy, respectively. Our findings suggested that breast 
cancer patients with mtTP53 were likely to benefit more 
from anthracycline-based chemotherapy than taxane-
based and TA regimen.

Our findings also showed that breast cancer patients 
with TOP2A, ERBB2, and MYC amplification (amp) 
achieved higher pCR rates than wtTOP2A, ERBB2, and 
MYC (56.3% (n=1) vs 13.8% (n=1), 28.4% (n=1) vs 6.1% 
(n=1), and 13.7% (n=1) vs 11.2% (n=1), respectively) 
when treated with TA regimens. On another note, 
breast cancer patients with wtCCND1 and unmethylated 
(unm) PCDH17 achieved higher pCR rate than those 
with CCND1 amp andmethylated (m) PCDH17 (13.8% 
(n=1) vs 2.7% (n=1) and 67.3% (n=1) vs 31.6% (n=1), 
respectively).

One included study by Mou et al. [71] focused on the 
effect of UGT2B7 rs7435335 on NAC TA efficacy. It was 
observed that patients with the genotype GA achieved 
higher pCR rate (42.3% (n=1)) than patients with the 
genotype GG (18.9% (n=1)). Another study by Xu et al. 
[96] analysed the effect of BRCA1 and BRCA2 mRNA 
expression in breast cancer patients treated with anthra-
cycline-based and taxane-based chemotherapy. Our find-
ings showed pCR benefit of 24.6% (n=1) vs 16.9% (n=1), 
16.9% (n=1) vs 17.5% (n=1), and 14% (n=1) vs 20.8% 
(n=1) in anthracycline-based treated patients with low, 
intermediate, and high BRCA1 vs BRCA2 mRNA expres-
sion, respectively. Meanwhile, in taxane-based treated 
patients, our findings showed pCR benefit of 19.6% (n=1) 
vs 24.4% (n=1), 26.8% (n=1) vs 23.4% (n=1), and 21.4% 
(n=1) vs 18.9% (n=1) with low, intermediate, and high 
BRCA1 vs BRCA2 mRNA expression, respectively. Nota-
bly, breast cancer patients with low EPIC1 showed higher 
pCR rate (40.7% (n=1)) when treated with TP regimen 
than patients with high EPIC1 (33.3% (n=1)).

Under meta-analysis, only one gene was analysed for 
its effect on pCR outcome in Asian breast cancer patients 
treated with NAC TA (Fig. 7).

Taxane‑anthracycline (TA) chemotherapy
From the analysis of two studies [100, 106], 564 patients 
were pooled for PIK3CA analysis. It was observed that 
patients harbouring wtPIK3CA were significantly associ-
ated with better pCRoutcomes compared to patients with 
mtPIK3CA gene (OR: 2.44; 95% CI 1.42–4.19; p=0.001; 
Fig. 7).

The overall summary results of pooled pCR outcome 
of NAC-treated Asian breast cancer patients of this study 
can be found in Table 1 whereby the favoured outcome 
for molecular subtypes with various NAC treatments 
were HER2E, TNBC, and Luminal B. The favoured out-
come for biomarkers across different NAC treatments 
was ER−, PR−, HR− and high ki67. Lastly, the favoured 
outcome for genetic variation was the PIK3CA wildtype. 
The overall summary of the steps conducted in complet-
ing this systematic review is presented in Table 2.

Pooled reported association
Meta-analyses of pooled reported association of pCR 
were evaluated according to molecular classification, 
genetic variations, and biomarkers characterisation of the 
Asian breast cancer patients.

Molecular classification
An adjusted pooled analysis of TNBC against non-
TNBC patients showed that TNBC patients were sig-
nificantly associated with better response when treated 
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Table 1 Pooled pCR outcome of NAC-treated Asian breast cancer patients according to molecular subtypes, biomarkers and genetic 
variations

Treatments Variables (molecular subtypes, biomarker, genetic variation)

Molecular subtypes OR 95%CI Overall P-value Favoured outcome

Taxane-Anthracycline Luminal-like vs HER2E 4.08 2.78,6.00 P< 0.00001 HER2E

Luminal A vs HER2E 5.27 1.16, 23.86 P=0.03 HER2E

Luminal B vs HER2E 2.78 1.42,5.44 P=0.0003 HER2E

Luminal, combined vs HER2E 3.89 2.69,5.64 P< 0.00001 HER2E

TNBC vs Luminal-like 4.45 2.79,7.11 P< 0.0001 TNBC

TNBC vs Luminal A 11.66 3.64, 37.38 P< 0.00001 TNBC

TNBC vs Luminal B 3.89 2.20, 6.87 P< 0.00001 TNBC

TNBC vs Luminal, combined 4.59 3.35, 6.29 P< 0.00001 TNBC

Taxane-platinum Luminal-like vs HER2E (the subgroup-assessed outcome) 2.30 1.66,319 P< 0.00001 HER2E

Luminal A vs HER2E 12.11 4.41,33.26 P< 0.00001 HER2E

Luminal B vs HER2E 5.92 2.59,13.54 P< 0.0001 HER2E

Luminal, combined vs HER2E 3.37 1.66, 6.84 P= 0.0008 HER2E

Luminal, combined vs HER2E (subgroup- assessed outcome) 3.80 2.02,7.13 P< 0.0001 HER2E

Luminal B vs Luminal A 3.26 1.14, 9.26 P=0.03 Luminal B

TNBC vs Luminal A 7.14 2.82,18.04 P< 0.0001 TNBC

TNBC vs Luminal B 2.19 1.09,4.41 P=0.03 TNBC

TNBC vs Luminal-like 3.79 1.94, 7.40 P< 0.0001 TNBC

Anthracycline-based Biomarkers
ER− vs ER+ 1.95 0.98,3.89 P=0.06 ER−

ER− vs ER+ (subgroup-population) 2.52 1.43, 4.44 P=0.001 ER−

PR− vs PR+ 2.40 1.52, 3.80 P=0.0002 PR−

HER2− vs HER2+ 2.31 1.42,3.75 P=0.0008 HER2−

Taxane-based HR− vs HR+ 1.96 1.24, 3.08 P=0.004 HR−

Taxane-anthracycline ER− vs ER+ 3.19 2.15, 4.75 P< 0.00001 ER−

PR− vs PR+ 3.11 2.12, 4.56 P< 0.00001 PR−

HR− vs HR+ 2.38 0.87,6.53 P=0.09 HR−

HR− vs HR+ (Subgroup-population) 3.58 1.62,7.90 P=0.002 HR−

HER2− vs HER2+ 1.78 1.05,3.02 P=0.0008 HER2+

nm23-H1− vs nm23-H1+ 6.74 2.13,21.30 P=0.001 nm23-H1−

CK5/6− vs CK5/6+ 1.87 1.03,3.39 P=0.04 CK5/6−

High Ki67 vs low Ki67 2.98 1.79,4.97 P< 0.0001 high Ki67

High Ki67 vs low Ki67
(subgroup- 14% cut-off )

1.82 0.65,5.10 P=0.20 high Ki67

High Ki67 vs low Ki67 (subgroup- 14% cut-off, primary objective) 3.12 1.93,5.04 P< 0.00001 high Ki67

High Ki67 vs low Ki67
(Subgroup- 20% cut-off )

2.88 1.36,6.10 P=0.006 high Ki67

Taxane-platinum ER− vs ER+ 4.91 3.20,7.53 P< 0.00001 ER−

PR− vs PR+ 3.82 2.45,5.90 P< 0.00001 PR−

HR− vs HR+ 2.71 1.43,5.41 P< 0.00001 HR−

High Ki67 vs low Ki67 2.20 0.74,6.59 P=0.16 high Ki67

High Ki67 vs low Ki67
(Subgroup- 20% cut-off )

4.37 1.62,11.75 P=0.003 high Ki67

HER2− vs HER2+ 2.44 0.84,7.06 P< 0.0001 HER2+

HER2− vs HER2+ (Subgroup-influential) 4.14 2.51,6.85 P< 0.00001 HER2+

TP vs TA In HER2+ breast cancer 1.60 0.66,3.88 P=0.30 TP

Subgroup- HER2+ breast cancer study 2.36 1.07,5.26 P=0.03 TP

Taxane-anthracycline Genetic variation
PIK3CA wildtype vs PIK3CA mutated 2.44 1.42,4.19 P=0.001 PIK3CA wildtype
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with neoadjuvant chemotherapy (OR 3.02; 95% CI 
1.54–5.95; p=0.001; Supplementary Figure  7.2A in 
Additional file  7). The observed moderate heterogene-
ity could be due to the study by Lv et  al. [69] that did 
not specifically study TNBC vs non-TNBC patients. 
Moreover, the recruited patients were either treated 
with anthracycline-based or TP or TA regimens. Mean-
while, Wu et  al. [91] specifically recruited TNBC and 
non-TNBC patients, and all were treated with TA. 

Hence, Wu et al.’s result carried more weight than that 
of Lv et al. in this analysis. However, Lv et al. compen-
sated for these differences by adjusting their multi-
variate analysis with molecular subtypes. Overall, this 
result should be taken with caution.

Genetic variations
Amongst pooled reported associations of pCR for genetic 
variations, our study evaluated the effect of PIK3CA and 

Table 2 Steps conducted in the systematic review

Steps Details

Research question In Asian breast cancer patients, how does personalised and precision medicine (in terms of breast cancer molecular 
subtypes diagnosis, presence or absence of biomarkers and genetic variants affect breast cancer treatment response 
and outcome?

Inclusion criteria Randomised trials, observational studies, case-control studies, and cohort studies of Asian breast cancer aged ≥18 years, 
who underwent systemic neoadjuvant chemotherapy treatment reporting the involvement of somatic genetic poly-
morphisms or biomarkers or molecular subtype classification on breast cancer treatment response.
The studies are written in the English language.

Participants Asian breast cancer patients

Outcome Outcome 1: Treatment response
Outcome 2: Survival

Search strategy Databases: MEDLINE (PubMed), Science Direct, Scopus, and Cochrane Library.
Date range: 01.01.2000 to 31.03.2021.
Search terms: The search term strategies can be found in Additional file 2. The terms were adapted for different data-
bases utilising a combination of Medical Subject Heading (MeSH) and keywords that are relevant which can be found 
in the titles and abstract.

Critical appraisal The authors extracted data from the published reports independently. Disagreements were resolved by a third person. 
The Newcastle-Ottawa Scale (NOS) was used.

Data collection and synthesis For each study, the extracted parameters include the article information (article title, first author, year published, journal 
published, country, and year of recruitment), study design, study population and sample size, characteristics of patients 
in three variables (molecular subtypes, biomarkers, and genetic variations), and the pCR data in selected variables. Nota-
bly, in the absence of molecular subtype classification in the included studies, whenever possible, they were approxi-
mated through the available biomarkers detected through IHC data.
Data analysis was done using Review Manager Software (RevMan version 5.4.1) [30]. The odds ratio (OR), hazards ratio 
(HR), and their corresponding 95% confidence interval (95% CI) were assessed to evaluate the association between treat-
ment response (pCR) and NAC treatment provided to breast cancer patients based on their molecular subtypes, bio-
markers, and genetic variations. The strength of associations was estimated by calculating pooled ORs/HRs and 95% CIs, 
by which significance was stated using the p-value. A p-value <0.05 was considered statistically significant.

Process Search (n=5746)
Excluded with reasons [refer to Figure 1 for detailed reasons] (n=5610)
Excluded after reviewing full-text (n=35)
Included studies (n=101)

Results Where statistically appropriate, studies were pooled.
Molecular subtypes:
Meta-analysis demonstrated that when treated with taxane-anthracycline, Asian breast cancer patients diagnosed 
with HER2E or TNBC achieved better pCR compared to those who are diagnosed with Luminal breast cancer. Meanwhile, 
when treated with taxane-platinum, HER2E and TNBC Asian breast cancer patients achieved better pCR compared 
to those who are diagnosed with Luminal breast cancer. When compared with Luminal A breast cancer patients, Lumi-
nal B Asian breast cancer patients achieved better pCR when treated with taxane-platinum.
Biomarkers:
Meta-analysis demonstrated that when treated with anthracycline-based treatment, ER−, PR− and HER2− Asian breast 
cancer patients achieved better pCR compared to those who are diagnosed with ER+, PR+ and HER2+ breast cancer. 
HR− Asian breast cancer patients are also demonstrated to respond better to taxane-based treatment. For Asian breast 
cancer patients treated with taxane-anthracycline, it was found that those who are diagnosed with ER−, PR−, HR−, 
HER2+, nm23-H1−, CK5/6− and high Ki67 biomarkers responded better to the treatment. As for Asian breast cancer 
patients treated with taxane-platinum, it was found that those who are diagnosed with ER−, PR−, HR−, HER2+ and high 
Ki67 biomarkers responded better to the treatment.
Genetic variation:
Meta-analysis also demonstrated that when treated with taxane-anthracycline-based treatment, Asian breast cancer 
patients who had wildtype PIK3CA gene achieved better pCR compared to those who were with mutated PIK3CA gene.
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TP53 genes in NAC-treated Asian BC patients. Notably, 
no specific or single variant vs wildtype was addressed 
for both genes as well. In the adjusted analysis of three 
[51, 100, 106] and two studies [51, 100] for PIK3CA and 
TP53 genes, respectively, breast cancer patients harbour-
ing mutation in the PIK3CA gene was associated with 
worse response (OR 0.64; 95% CI 0.42-0.98; p=0.04; Sup-
plementary Figure 7.2B in Additional file 7) while TP53 
gene was not associated with pCR outcome (OR 1.34; 
95% CI 0.59–3.05; p=0.49; Supplementary Figure 7.2B in 
Additional file 7).

Biomarkers
Amongst pooled reported associations of pCR for bio-
markers, our study evaluated the effect of Tau, nm23-H1, 
ER, PR, HR, HER2, and Ki-67 biomarkers in NAC-treated 
Asian BC patients (Supplementary Figures  7.2–7.8 in 
Additional file  7). In an adjusted analysis of Tau pool-
ing two studies [61, 83], the result suggests that Tau+ 
was associated with worse response in the neoadjuvant 
setting (OR 0.22, 95% CI 0.09–0.54, p=0.0008; Supple-
mentary Figure 7.2C in Additional file 7). Meanwhile in 
adjusted analysis of nm23-H1 pooling two studies [12, 
60], nm23-H1 was not associated with pCR outcome in 
TA-treated patients (OR 1.56, 95% CI 0.55–4.45, p=0.41; 
Supplementary Figure 7.2C in Additional file 7).

The association between pCR in NAC-treated breast 
cancer patients and ER was evaluated in Supplemen-
tary Figure  7.3 (Additional file  7). In the crude analysis 
of ER+ vs ER− pooling five studies [61, 94, 97, 112, 115], 
ER was not associated with pCR outcome (OR 0.39; 95% 
CI 0.13–1.15; p=0.09). The reported moderate heteroge-
neity between the studies was perhaps due to the differ-
ence in favoured outcomes in one study [112] compared 
to the rest. Moreover, the heterogeneity is attributable 
to the different NAC treatments received in each study, 
whereby the patients were either treated with TP or 
anthracycline-containing regimens. Therefore, subgroup 
analyses of ER− vs ER+ pooling studies with patients 
treated with anthracycline-containing chemotherapy [61, 
112] and taxane-platinum chemotherapy [94, 97, 115] 
were conducted. Our analysis revealed that ER was not 
associated with pCR outcome when patients were treated 
with an anthracycline-containing agent (OR 1.19; 95% 
CI 0.07–19.28; p=0.90) with considerable heterogeneity 
observed between the studies. The heterogeneity is per-
haps due to differences in the favoured outcome in each 
study caused by the addition of the taxane regimen with 
the anthracycline in Li et al. [61]. Contrarily, ER+ patients 
were significantly associated with worse response when 
treated with TP (OR 0.19; 95% CI 0.11–0.32; p<0.00001).

Meanwhile, adjusted analysis of ER+ vs ER− pooling 
fourteen studies [54, 56, 61, 68, 71, 72, 83, 94, 97, 102, 
103, 106, 112, 131] also showed that ER was not associ-
ated with pCR outcome (OR 0.59; 95% CI 0.32–1.08; 
p=0.09; Supplementary Figure  7.3 in Additional file  7). 
The observed substantial heterogeneity between the 
studies was perhaps due to differences in the chemother-
apeutic agents received in each study. Subgroup analysis 
pooling five studies [56, 72, 83, 106, 131] with patients 
treated in the neoadjuvant setting revealed that ER was 
not associated with pCR outcome (OR 0.47; 95% CI 0.19–
1.14; p=0.09) with considerable heterogeneity reported 
between the studies probably due to clinical variances 
between the studies. Another two subgroup analyses 
pooling studies with patients treated with TP [94, 97] 
and TA [54, 61, 71] regimens indicate that ER+ was sig-
nificantly associated with worse response (OR 0.21; 95% 
CI 0.06–0.70; p=0.01 and OR 0.34; 95% CI 0.19–0.61; 
p=0.0003, respectively). While subgroup analysis pooling 
studies with patients treated with anthracycline-based 
chemotherapy [102, 112] showed that ER was not asso-
ciated with pCR response (OR 4.29; 95% CI 0.67–27.39; 
p=0.12). Substantial heterogeneity was reported probably 
due to the difference in effect size between the studies 
attributed to the study sample size, whereby Zhao et al. 
[112] recruited 98 locally advanced breast cancer patients 
while Yao et al. [102] recruited 538 breast cancer patients.

Meanwhile, analyses pooling studies based on the 
characteristics of the patients showed that ER was not 
associated with pCR in patients achieving a complete 
pathological response in the breast only (OR 0.93; 95% 
CI 0.18–4.85; p=0.94; Supplementary Figure 7.3 in Addi-
tional file  7). The observed heterogeneity between the 
studies is probably due to the smaller number of studies 
pooled (n=2) and each study favoured a different out-
come. Notably, ER− patients were significantly associ-
ated with pCR in studies pooling anthracycline-treated 
patients (OR 2.78; 95% CI 1.61–4.78; p=0.0002; Supple-
mentary Figure 7.3 in Additional file 7).

The role of the biomarker PR was assessed in Asian 
breast cancer patients subjected to neoadjuvant chemo-
therapy (Supplementary Figure  7.4 in Additional file  7). 
In an analysis with crude OR results pooling five studies 
[61, 94, 97, 112, 115], it was observed that patients with 
PR+ were significantly associated with worse response 
(OR 0.40; 95% CI 0.20–0.79; p=0.009). The observed sub-
stantial heterogeneity between the studies was perhaps 
due to the difference in the favoured outcome in one 
study [112] and differences in weightage and population 
size. Subgroup analysis pooling studies with TP-treated 
patients [94, 97, 115] revealed PR+ patients were signifi-
cantly associated with worse response (OR 0.29; 95% CI 
0.13–0.62; p=0.001). Although moderate heterogeneity 
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was reported, all the three studies pooled for the sub-
group analysis were conducted in the Chinese population 
with no clinical variances. Thus, the heterogeneity result 
was rejected. Meanwhile, in subgroup analysis pooling 
patients treated with anthracycline-containing NAC [61, 
112], the biomarker PR was not associated with treat-
ment response (OR 0.66; 95% CI 0.17–2.62; p=0.55).

PR was also not associated with treatment response 
in the adjusted analysis pooling eight studies [54, 56, 
61, 94, 97, 102, 103, 106] (OR 1.01; 95% CI 0.64–1.60; 
p=0.97; Supplementary Figure  7.4 in Additional file  7). 
The observed moderate heterogeneity was probably 
due to differences in population size and differences in 
treatment given in each study. We then conducted four 
subgroup analyses focusing on the treatment regimen 
and found that PR was not associated with treatment 
response in breast cancer patients treated: (1) in the neo-
adjuvant setting (OR 1.01; 95% CI 0.47–2.18; p=0.99); 
(2) with TP (OR 0.94; 95% CI 0.34–2.58; p=0.91); and (3) 
TA regimens (OR 0.37; 95% CI 0.05–2.94; p=0.35), but 
PR− was significantly associated with better response in 
anthracycline-containing treated patients (OR 1.63; 95% 
CI 1.03–2.57; p=0.04). Meanwhile, in adjusted analysis 
pooling studies with anthracycline-treated patients [88, 
96] revealed that PR was not significantly associated with 
treatment response (OR 1.43; 95% CI 0.74–2.77; p=0.29).

The association between treatment response and hor-
mone receptors (HR) comprising ER and PR was assessed 
in Asian breast cancer patients (Supplementary Fig-
ure  7.5 in Additional file  7). In an analysis with crude 
OR pooling four studies [51, 62, 64, 116], it was observed 
that patients with HR+ were significantly associated with 
worse treatment response in the neoadjuvant setting (OR 
0.47; 95% CI 0.24–0.92; p=0.03). In a subgroup analysis 
whereby all the recruited patients in the pooled studies 
[51, 64] were of HER2+, it was observed that HR+ were 
significantly associated with a worse response (OR 0.40; 
95% CI 0.18–0.89; p=0.02). Excluding the aforemen-
tioned studies, subgroup analysis pooling two studies [62, 
116] revealed that HR was not significantly associated 
with treatment response in the neoadjuvant setting (OR 
1.16; 95% CI 0.22–6.22; p=0.87).

Similarly, analysis with adjusted OR pooling five stud-
ies [51, 60, 62, 64, 70] indicated that HR was not signifi-
cantly associated with treatment response (OR 1.27; 95% 
CI 0.47–3.45; p=0.64; Supplementary Figure 7.5 in Addi-
tional file 7). The observed substantial heterogeneity was 
perhaps due to the clinical variance in the characteristics 
of the recruited breast cancer population in each study. 
Subgroup analysis pooling studies analysing HR+ vs HR− 
in the neoadjuvant setting [62, 70] showed that HR− were 
significantly associated with better treatment responses 
(OR 2.39; 95% CI 1.17–04.87; p=0.02). Meanwhile, 

subgroup analysis pooling studies with HER2+ patients 
[51, 64] revealed that HR+/HER2+ breast cancer were 
significantly associated with worse treatment responses 
in the neoadjuvant setting (OR 0.43; 95% CI 0.21–0.88; 
p=0.02).

The association between pCR outcome and HER2 
was estimated in Supplementary Figure  7.6 (Additional 
file 7). In an analysis pooling crude OR of seven studies 
[61, 62, 77, 94, 97, 112, 115], it was observed that HER2+ 
breast cancer patients were significantly associated with 
better treatment response (OR 2.50; 95% CI 1.44–4.35; 
p=0.001). The moderate heterogeneity reported between 
the studies was perhaps due to the differences in treat-
ment regimens given to the recruited breast cancer popu-
lation in each study. Subsequently, two subgroup analyses 
pooling studies according to the chemotherapy regimens 
administered to the breast cancer patients revealed that 
HER2+ patients treated with TP regimen [94, 97, 115] 
were significantly associated with better response (OR 
4.64; 95% CI 2.74–7.86; p<0.00001), while HER2 was not 
associated with treatment response in patients treated 
with anthracycline-containing regimen (84,141) (OR 
2.08; 95% CI 0.90–4.78; p=0.09).

Similarly, in an analysis pooling adjusted OR of 12 
studies [56, 60, 61, 70, 77, 83, 94, 97, 102, 103, 106, 131], 
it was observed that HER2+ breast cancer patients were 
significantly associated with better treatment response 
(OR 2.29; 95% CI 1.56–3.35; p<0.0001; Supplementary 
Figure  7.6 in Additional file  7). Substantial heterogene-
ity was reported, perhaps due to the clinical variances 
in each study, based on the treatment received by the 
patients and the characteristics of the recruited breast 
cancer population. Subgroup analysis pooling five studies 
in the neoadjuvant setting [56, 70, 83, 106, 131] showed 
patients with HER2+ were significantly associated with 
better response (OR 2.33; 95% CI 1.31–4.15; p=0.004). 
Some differences between the studies might explain the 
observed substantial heterogeneity: (1) two of the studies 
[56, 83] main objective was to investigate the association 
of Tau with response to neoadjuvant chemotherapy, while 
Yuan et  al. [106] focused on the association of PIK3CA 
mutation status with response to neoadjuvant chemo-
therapy, and Lim et  al. [131] and Lv et  al. [70] assessed 
factors affecting neoadjuvant treatment response; (2) 
Lim et al. [131] was the only study including multi-ethnic 
cohort of breast cancer patients since it was conducted 
in Singapore and Malaysia, although one of the ethnic-
ity included in Lim et al. was Chinese. Meanwhile, sub-
group analyses pooling two studies of patients treated 
with TP [94, 97] and two studies of patients treated with 
anthracycline-containing chemotherapy [102, 103] indi-
cate HER2+ patients were significantly associated with 
better treatment response (OR 7.07; 95% CI 2.88–17.40; 
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p<0.0001 and OR 2.65; 95% CI 1.66–4.23; p<0.0001, 
respectively). However, subgroup analysis pooling two 
studies of patients treated with TA [60, 61] revealed that 
HER2 was not associated with treatment response (OR 
1.08; 95% CI 0.47–2.51; p=0.85).

Notably, HER2 was also not associated with pCR in 
patients achieving a complete pathological response in 
the breast only (OR 1.96; 95% CI 0.78–4.89; p=0.15; Sup-
plementary Figure 7.6 in Additional file 7) and in anthra-
cycline-treated patients (OR 1.52; 95% CI 0.97–2.40; 
p=0.07; Supplementary Figure 7.6 in Additional file 7).

As for Ki-67, an analysis pooling crude OR of eight 
studies [46, 51, 61, 64, 94, 97, 115, 123] observed that 
patients with high Ki-67 were significantly associated 
with better treatment responses (OR 2.63; 95% CI 1.69–
4.07; p<0.0001; Supplementary Figure  7.7 in Additional 
file  7). Subgroup crude analyses pooling studies with 
TNBC patients [46, 123] and patients treated with TP [94, 
97, 115] and TA [46, 61] revealed that patients with high 
Ki-67 were significantly favoured to achieve better treat-
ment responses (OR 4.42; 95% CI 1.41–13.85; p=0.01, OR 
2.13; 95% CI 1.21–3.75; p=0.009, and OR 4.26; 95% CI 
1.90–9.54; p=0.0004, respectively). Meanwhile, subgroup 
crude analysis pooling studies with HER2+ patients [51, 
64] showed that Ki-67 was not associated with treatment 
response (OR 1.55; 95% CI 0.79–3.07; p=0.20).

Similarly, an analysis of adjusted OR pooling seven 
studies [12, 46, 51, 54, 94, 97, 110] showed that patients 
with high Ki-67 were significantly associated with bet-
ter treatment response (OR 2.63; 95% CI 1.56–4.41; 
p=0.0003; Supplementary Figure  7.7 in Additional 
file  7). In subgroup adjusted analysis pooling studies 
with HER2+ patients [51, 110], breast cancer patients 
with high Ki-67 were significantly associated with bet-
ter response in the neoadjuvant setting (OR 3.67; 95% CI 
1.11–12.12; p=0.03). Congruent with the subgroup crude 
analysis, a subgroup adjusted analysis of pooled studies 
with TNBC patients [12, 46] also revealed patients with 
high Ki-67 were significantly associated with better treat-
ment response (OR 2.16; 95% CI 1.00–4.64; p=0.05). 
Notably, the analysis was also influenced by the fact that 
the TNBC patients were treated with the TA regimen. 
Breast cancer patients with high Ki-67 were also signifi-
cantly associated with better treatment response when 
treated with TA regimen (OR 2.24; 95% CI 1.34–3.74; 
p=0.002). However, in patients treated with NAC TP, 
Ki-67 was not associated with treatment response (OR 
4.63; 95% CI 0.35–61.14; p=0.24).

Three biomarkers—ER, HR, and Ki-67—were evalu-
ated by pooling studies reporting their association 
using hazards ratio (Supplementary Figure  7.8 in Addi-
tional file  7). Our pooled adjusted analysis of two stud-
ies [73, 80] showed that ER− patients were significantly 

associated with better treatment response (HR 2.75; 95% 
CI 1.25–6.05; p=0.01). Both crude and adjusted analysis 
of HR− vs HR+ and high vs low Ki-67 in HER2+ patients 
treated with taxane-containing chemotherapy showed 
that HR− patients and patients with high Ki-67 were sig-
nificantly associated with a better response. However, in 
an adjusted result analysis of high vs low Ki-67 in patients 
treated with taxane-containing chemotherapy, Ki-67 
was not significantly associated with treatment response 
(HR 1.26; 95% CI 1.26–8.25; p=0.81) with substantial 
heterogeneity. The significant heterogeneity might be 
explained by the variation in the taxane-based treatment 
regimen where Zhang et al. [107] included patients sub-
mitted to either single taxane-based regime or taxane-
platinum combination, while all patients recruited in 
Wang et  al. [80] and Ding et  al. [47] were submitted to 
taxane-anthracycline and taxane-platinum combination 
regimens, respectively. Moreover, Zhang et al. and Ding 
et al. incorporated trastuzumab as part of their neoadju-
vant regimen while Wang et al. subjected their patients to 
trastuzumab in the adjuvant setting.

Publication bias
Publication bias assessment was done using the Jamovi 
Software (version 2.3) [133] (Supplementary Figures 8.1- 
8.13 in Additional file 8). The occurrence of publication 
bias was observed in two analyses.

First, in the overall analysis evaluating the association 
of pCR outcome with HER2+ and HER2− breast cancer 
patients submitted to TA chemotherapy, the regression 
test indicated funnel plot asymmetry (p=0.03) but not 
the rank correlation test (p=0.34). File drawer analysis 
indicated that at least 51 studies would be required to 
nullify the effect (p<0.001). Hence, there is less chance 
of publication bias in the analysis. As indicated in Fig. 5, 
subgroup analysis was not conducted for the overall anal-
ysis because although the effect is estimated to favour 
HER2+ significantly, in some studies the true effect may 
in fact favour HER2−.

Second, in the overall analysis evaluating the asso-
ciation of treatment response with PR− and PR+ breast 
cancer patients in the neoadjuvant setting, the rank cor-
relation test indicated funnel plot asymmetry (p=0.03) 
but not the regression test (p=0.08). File drawer analysis 
suggested the presence of publication bias in the analysis, 
which could be explained by the heterogeneity observed 
between the pooled studies, specifically in the treatment 
regimens assessed in each study. Thus, four subsequent 
subgroup analyses—pooling two studies at each treat-
ment regimen the patients were subjected to—were 
conducted for the overall PR− vs PR+ (adjusted results) 
analysis (Supplementary Figure 7.4 in Additional file 7).
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Discussion
There are many options for breast cancer treatment. 
Often, this includes surgery, radiotherapy, and systemic 
therapy comprising chemotherapy with or without tar-
geted therapy. Systemic treatment is commonly decided 
based on the target biomarkers, ensuring the treatment 
would be effective. Improvements in systemic therapy 
and targeted therapies utilising an individual’s diag-
nosis have improved overall pCR rates in breast cancer 
patients. Studies reported pCR benefits of 44.4% (n=8/18) 
in TNBC patients treated with NAC TP than 0% (n=0/9) 
in Luminal A [69], 8.9% (n=56/632) in ER+ breast cancer 
patients treated with NAC TA than 19.8% (n=75/378) in 
ER− patients [36], and 24.7% (n=55/223) in breast cancer 
patients with wildtype PIK3CA gene treated with NAC 
TA than 11.7% (n=11/94) in mutated PIK3CA [106]. Pre-
operative chemotherapy or neoadjuvant chemotherapy 
is typically the standard of care in treating both operable 
and inoperable locally advanced breast cancer owing to 
its advantage for breast conservation surgery and aids in 
shrinking an inoperable tumour to improve resectability 
[134]. The success of neoadjuvant chemotherapy associ-
ated with treatment response (pCR) could be used as a 
prognostic value in managing breast cancer since the effi-
cacy of a treatment often translates into a highly favour-
able overall survival and disease-free progression. Often, 
the best pCR outcomes were observed with TNBC, 
moderate for HER2E, and the worst for Luminal [134]. 
Notably, different breast cancer subtypes have different 
sensitivities to NAC and frequently, a combination of 
them is given to be effective.

We systematically evaluated the effect of breast can-
cer molecular subtypes, biomarkers, and genetic varia-
tions on breast cancer treatment in Asian breast cancer 
patients, focusing on treatment response (pCR) in the 
neoadjuvant setting. In our study, the common NAC 
treatments used in the pooled analyses were TA, TP, 
anthracycline-based, and taxane-based chemotherapies 
with reported pCR rates of 2.7–64.7%, 7.7–60%, 4.3–35%, 
and 11.3–57.1%, respectively owing to the molecular 
subtypes, biomarkers, and genetic variations present in 
the breast cancer patients. There were limited studies 
focused on breast cancer treatment in Asian breast can-
cer patients utilising the molecular subtypes classifica-
tion of breast cancer clinically. In particular, most studies 
reported the association between breast cancer treatment 
response with biomarkers and/or genetic variations. 
From our study, the most frequent subtypes in the Asian 
population are TNBC and HER2E, followed by luminal B 
and luminal A. This trend was not consistent with pre-
vious studies on the Asian population conducted on 560 
Malaysian breast cancer tumours [24] and 2791 Chinese 
women with breast cancer [76]. Notably, the subtype 

frequencies in our study might not reflect the entirety 
of the Asian population. Most of the studies included in 
this paper were mainly from the Chinese population and 
fewer of the others (Korean, Japanese, Malaysian, and 
Indian). Moreover, not all the studies included focused 
on all four subtypes. Some studies have a different defini-
tion of a luminal A, luminal B, and luminal-like subtype 
when using IHC as a surrogate to classify breast cancer 
since it is readily available and cost-effective than gene 
panels.

Our findings suggest Asian TNBC patients subjected 
to TA and TP in the neoadjuvant setting were observed 
to favour better response. In particular, although TNBC 
subtypes were reported to be more likely to benefit from 
NAC treatment compared to non-TNBC, it is signifi-
cantly associated through statistical analysis with bet-
ter response when treated with NAC TP than TA in our 
study. These findings are consistent with meta-analysis 
conducted in the general population by Pandy et al. [135] 
pooling 2415 breast cancer patients treated with NAC 
TA and TP, which revealed that there was an improve-
ment in the pCR rates in TP-treated patients (44.6%) 
compared to TA-treated patients (27.8%). TNBC has a 
poor prognosis and is a more aggressive subtype, with a 
higher recurrence rate and metastasis (138). Due to the 
lack of receptor expression, it is not responsive to hormo-
nal therapy [136]. While pCR was observed to be higher 
in TNBC, which often translates to a desirable long-term 
outcome [75], some studies have observed the oppo-
site effect whereby there was no difference in survival 
in patients that have achieved pCR [137, 138]. Similarly, 
our study showed that HER2E patients were more likely 
to achieve pCR benefit from NAC TP (52.4%) than TA 
treatment (27.8%). HER2E is an aggressive subtype with 
a poor prognosis [139]. However, it can be sensitive to 
cytotoxic chemotherapy and slightly resistant to hormo-
nal therapy and has shown some positive outcomes with 
targeted therapy [139–141].

Our study revealed that patients with luminal A sub-
type were less likely to benefit from TA (7.7%) and TP 
(4.3%) regimens in the neoadjuvant setting. Meanwhile, 
luminal B has a slightly better pCR rate when treated 
with TP (28.1%) and TA (12%) and similarly, luminal-
like treated with TP (32.5%) and TA (9%). Despite poor 
responses to NAC, luminal A has a good prognosis [142] 
with a significantly lower relapse rate than other sub-
types, and usually responds well to hormonal therapy 
[141, 142]. Luminal B has a slightly worse prognosis than 
luminal A, with an increased chance of recurrence rate, 
decreased survival rate after relapse, and less sensitiv-
ity to hormonal therapy [141, 143]. Notably, the distinct 
characteristics of each subtype make it challenging to 
find a treatment that would be effective for all of them. 
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Thus, a combination of chemotherapy, targeted ther-
apy, and endocrine therapy is frequently utilised. Taken 
together, our study showed that each subtype responds 
differently to different single or combination of chemo-
therapeutic agents in the neoadjuvant setting.

Our study’s evaluation of the effect of biomarkers on 
the pCR outcome suggested the commonly reported 
biomarkers ER, PR, HER2, and Ki-67 as predictors of 
the likelihood of better pCR outcomes in breast cancer 
patients. In particular, patients with negative expression 
of ER and PR, positive expression of HER2, and higher 
expression of Ki-67 are significantly associated with bet-
ter pCR outcomes when treated with either TA or TP 
chemotherapeutic regimens in the neoadjuvant setting. 
Patients with negative expression of PR and HER2 are 
also significantly associated with better pCR outcomes 
when treated with an anthracycline agent, while patients 
with HR-negative (ER− and PR−) are significantly asso-
ciated with better pCR outcomes when treated with tax-
ane. In contrast, although Łukasiewicz et  al. supported 
the expression of ER, PR, HER2, and Ki-67 as predic-
tive and potential prognostic factors, the updated review 
on breast cancer specified that patients with higher 
expression of these biomarkers are those who are usu-
ally present significantly better clinical outcomes [144]. 
Unfortunately, Łukasiewicz et al. did not review the pre-
dictive or prognostic value of the biomarkers concerning 
specific chemotherapeutic regimens.

The proper Ki-67 cut-off value in positive hormone 
receptors (HR+) breast cancer was often discussed due 
to its importance in evaluating the aggressiveness of the 
cancer and to distinguish between luminal A and lumi-
nal B (HER2−) subtypes when IHC is used as a surrogate 
classification since both subtypes are of ER+ and HER2− 
[5, 144]. Furthermore, experts at the St Gallen Consensus 
Meeting have changed the threshold for Ki-67 over time, 
from 14% in 2011 to 20% in 2013 [5]. Without the estab-
lishment of an optimal Ki-67 cut-off value, it has become 
challenging to discern what constitutes truly a high or 
low proliferation of Ki-67 in some studies which led to 
low reproducibility for the Ki-67 marker. In resolving 
this issue, the International Ki67 in Breast Cancer Work-
ing Group (IKWG) agrees that without improvements in 
the standardisation of the Ki-67 cut-off value, routine, 
non-trial settings can reliably categorise very low Ki-67 
as ≤5% and very high as ≥30% [145]. Notably, our study 
congruently suggested that high Ki-67 is significantly 
associated with better treatment response only at 14 and 
20% cut-off values.

Our meta-analysis findings also suggested other bio-
markers such as nm23-H1 and CK5/6 as predictors 
in TA-treated Asian breast cancer patients and Tau in 
NAC-treated patients. These other biomarkers can be 

further evaluated and utilised as potential targets in 
treating breast cancer due to their involvement in the 
cell signalling pathway and cell division [12, 60]. Tau pro-
tein behaves as a microtubule-association protein, which 
can be found in normal breast epithelial and cancer cells 
[61]. The expression of Tau protein was found higher in 
metastatic breast cancer and is often associated with bet-
ter prognosis and better response to taxanes [61, 146]. 
Interestingly, our findings suggest the opposite effect 
where Tau- breast cancer was favoured to have a better 
response when treated with taxane-containing chemo-
therapy. However, this could be due to the clinical vari-
ance in the study pooled in our analysis. In particular, 
breast cancer patients in Li et al. [61] were treated with 
combination TA regimens, while patients in Wang et al. 
[83] were treated with TP regimens. Furthermore, both 
studies excluded metastatic breast cancer patients from 
their study. Meanwhile, CK5/6—often used to define 
basal-like TNBC—is an intermediate filament protein 
that provides structure to the cell and is also associated 
with poor prognosis [90]. CK5/6 and EGFR expression 
were accepted as biomarkers for classification of Basal-
like breast cancer within the TNBC subtype [90].

There were several genes included for analysis in this 
study. Our meta-analysis results suggested the PIK3CA 
gene as a predictor for pCR in TA-treated breast cancer 
patients with PIK3CA mt (17.1%) and PIK3CAwt (24.7%) 
[106]. Similarly, patients harbouring mutated PIK3CA 
gene in the Caucasian population who received either 
trastuzumab, lapatinib, or the combination in addition to 
a taxane-based chemotherapy are associated with a lower 
pCR rate [147]. PIK3CA mutations are commonly found 
in the luminal subtypes, involving signalling pathways to 
attain a multi-lineage potential, leading to resistance to 
endocrine therapy [148]. The current treatment recently 
approved by the US FDA for breast cancer with PIK3CA 
mutation includes an oral medication Alpelisib acting as 
PI3K Alpha-Selective Inhibitor. This works as an inhibi-
tor on the common mutation site and induces p110α 
degradation. This type of PIK3 inhibitor showed more 
tolerable effects in patients. However, substantial toxici-
ties are still present [149, 150].

Although our study did not reveal a significant asso-
ciation between pCR and the TP53 gene, TP53 is one of 
the frequently mutated genes in breast cancer and has an 
involvement in gene transcription that curates cell cycle 
processes, apoptosis, and DNA repair [151]. TP53 muta-
tions are correlated with HER2+, HR−, and high Ki-67 
and contribute to the aggressive characteristics of can-
cer, leading to treatment resistance [152]. Therefore, it 
is often associated with a poor prognosis. The molecu-
lar profile involving gene expression has been associ-
ated with breast cancer recurrence. While the molecular 
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profiling of advanced breast cancer is crucial, it can also 
be very costly. There is a complex interplay between the 
genes and the signal pathways which subsequently affect 
the pCR outcome that needs to be further understood.

In this study, we have explored the role of molecular 
subtypes, biomarkers, and genetic variations on treat-
ment outcome. It was evident that the treatment given 
to patients based on their breast cancer characterisa-
tion in the neoadjuvant settings has yielded variable pCR 
outcome. The combination of classifying the patient’s 
molecular subtypes and identifying the status of their 
biomarkers can effectively predict the treatment out-
come. Apart from use of the routine biomarkers (ER, PR, 
and HER2), further classification and diagnosis can be 
done utilising several of the non-conventional biomark-
ers (Tau, CK5/6, EGFR, Topo-II) and genes (TP53 and 
PIK3CA) especially in the Asian population in hopes to 
achieve better individualised treatment through PPM. 
Thus, there is a need for high-quality validated biomark-
ers that can predict treatment responses.

Limitations
Despite the efforts during the development and comple-
tion of this study, some limitations need to be addressed. 
First, our study is inclusive of different analytical study 
designs such as observational (case-control and cohort 
study) and experimental (randomised controlled trials 
and non-randomised controlled trials) which might be 
prone to bias and heterogeneity when they are pooled for 
analysis. Second, the number of individual studies pooled 
for each of the analyses was mostly small, both in the 
overall and subgroup analyses. Third, for a considerable 
number of studies, there was a need to (1) indirectly cat-
egorised their molecular subtypes based on IHC which 
may not be entirely correct since we are only utilising 
the data available in the article, and (2) indirectly calcu-
late the 95% CI value in RevMan which may deviate from 
the original value. Lastly, our tests for publication bias 
should be considered carefully as the number and size of 
studies included were limited. Notwithstanding the first 
limitation of this study, the inclusion of several different 
analytical study designs allowed us to increase the num-
ber of individual studies gathered for the identification 
of genetic determinants of treatment outcome in breast 
cancer patients submitted to neoadjuvant chemotherapy. 
Moreover, we have accounted for heterogeneity using 
best practices that are consistent with those employed by 
The Cochrane Collaboration [153]. Nonetheless, future 
studies should be focused on each of the breast cancer 
characterisations to validate our findings. In particular, 
future studies focusing on investigating the effect of spe-
cific variant of a gene—utilising the homozygous and het-
erozygous nature of the variant—against their wildtype 

on treatment outcome in Asian breast cancer patients 
will justify the importance and benefits of PPM.

Conclusions
To the best of our knowledge, this SLR is the only com-
prehensive review currently available that analyses the 
effect of molecular subtype classification, biomarkers, 
and genetic variations on the pCR outcome of breast can-
cer patients in the neoadjuvant setting focusing on the 
Asian population. The SLR search spanned 20 years and 
identified over 6000 records which was further reduced 
to 3725 records after the exclusion of non-Asian breast 
cancer patients, suggesting that although this area is still 
understudied, there is a growing interest to pursue the 
research area. Notably, this SLR adhered to best practices 
and followed PRISMA reporting guidelines. Our findings 
justified that molecular subtype (HER2E and TNBC), 
biomarkers (ER, PR, HER2, HR, Ki-67, nm23-H1, CK5/6, 
and Tau), and gene (PIK3CA) could be further explored 
for their possible role in first-line treatment response in 
Asian breast cancer clinical studies. Understanding the 
effect of these determinants might be a crucial step to 
tailor treatment to each patient, which can avoid over-
treatment of the tumour with non-aggressive nature and 
undertreatment of the tumour with aggressive nature. 
Thus, with further validation, this information can be uti-
lised to treat breast cancer more efficiently in the Asian 
population.
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