
Masoumi et al. Systematic Reviews          (2024) 13:107  
https://doi.org/10.1186/s13643-024-02470-y

METHODOLOGY Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Systematic Reviews

Natural language processing (NLP) 
to facilitate abstract review in medical research: 
the application of BioBERT to exploring 
the 20‑year use of NLP in medical research
Safoora Masoumi1*   , Hossein Amirkhani2, Najmeh Sadeghian3 and Saeid Shahraz4 

Abstract 

Background  Abstract review is a time and labor-consuming step in the systematic and scoping literature review 
in medicine. Text mining methods, typically natural language processing (NLP), may efficiently replace manual 
abstract screening. This study applies NLP to a deliberately selected literature review problem, the trend of using NLP 
in medical research, to demonstrate the performance of this automated abstract review model.

Methods  Scanning PubMed, Embase, PsycINFO, and CINAHL databases, we identified 22,294 with a final selection 
of 12,817 English abstracts published between 2000 and 2021. We invented a manual classification of medical fields, 
three variables, i.e., the context of use (COU), text source (TS), and primary research field (PRF). A training dataset 
was developed after reviewing 485 abstracts. We used a language model called Bidirectional Encoder Representa-
tions from Transformers to classify the abstracts. To evaluate the performance of the trained models, we report a micro 
f1-score and accuracy.

Results   The trained models’ micro f1-score for classifying abstracts, into three variables were 77.35% for COU, 76.24% 
for TS, and 85.64% for PRF.

The average annual growth rate (AAGR) of the publications was 20.99% between 2000 and 2020 (72.01 articles (95% 
CI: 56.80–78.30) yearly increase), with 81.76% of the abstracts published between 2010 and 2020. Studies on neo-
plasms constituted 27.66% of the entire corpus with an AAGR of 42.41%, followed by studies on mental condi-
tions (AAGR​ = 39.28%). While electronic health or medical records comprised the highest proportion of text sources 
(57.12%), omics databases had the highest growth among all text sources with an AAGR of 65.08%. The most com-
mon NLP application was clinical decision support (25.45%).

Conclusions  BioBERT showed an acceptable performance in the abstract review. If future research shows the high 
performance of this language model, it can reliably replace manual abstract reviews.
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Background
The history of natural language processing (NLP) is rel-
atively short, but it has seen rapid growth through mul-
tiple fundamental revolutions. Alan Turing invented a 
test in the 1950s to determine whether computers could 
think like humans [1]. NLP scientists then applied uni-
versal linguistic rules to textual data to understand it. 
During this time, Noam Chomsky’s universal theory of 
language dominated NLP scientists’ attention. Com-
puter scientists replaced this linguistic approach with 
computational models based on statistical analysis [1]. 
Increasing computational power for analyzing a large 
amount of textual information has contributed to our 
current understanding of NLP and its applications due 
to the invention of machine learning methods, espe-
cially deep learning [1–3]. Our intelligent machines 
now need natural language processing (NLP) to deci-
pher meanings from human languages. With the wide-
spread availability of smart gadgets in everyone’s life, 
NLP has become even more advanced over the past two 
decades [4, 5]. Machines cannot recognize phrases and 
expressions without NLP in spoken and written lan-
guages. Moreover, the enormous amount of unstruc-
tured data produced daily highlights the need for NLP 
to assist professionals in sorting out their information 
[2, 4]. Evidence-based medicine relies on systematic 
literature reviews to answer specific questions from a 
large amount of textual data, which can be challenging 
and time-consuming [6].

Machine learning and natural language processing 
can speed up and improve the SLR. In this context, text 
classification and data extraction are two NLP-based 
strategies. Abstract screening is an essential application 
of text classification in literature reviews. Alternatively, 
data extraction identifies information about a particular 
variable of interest. NLP can, for example, help extract 
the number of individuals who participated in particular 
clinical trials [6, 7]. BERT (Bidirectional Encoder Rep-
resentations from Transformers) is a transformer-based 
machine learning model for language modeling that has 
demonstrated significant success in various NLP tasks 
[8]. BioBERT, a BERT-based model pre-trained on bio-
medical texts, has outperformed other pre-trained lan-
guage models in some biomedical datasets [9]. BioBERT 
has been highly performant in previous studies [10–13].

In this study, we deliberately analyze the evolution 
of medical NLP over the last two decades and bench-
marked some of our findings against two similar studies 
published recently [14, 15]. As an example of how NLP 
aids abstract review, we conducted an SLR using an auto-
mated method. Based on the results of SLR, a list of data 
sources used in medical NLP literature is provided, along 
with the type of NLP application and the related disease 

areas. We also show how the BioBERT model categorizes 
abstracts.

Methods
Developing training data
PubMed, Embase, PsycINFO, and CINAHL were 
searched using controlled vocabulary thesaurus (MesH 
in PubMed and Emtree in Embase) and free-text key-
words. The search queries included “natural language 
processing” and “text mining.” Additional file 1 provides 
the full search queries. Also excluded were editorials, 
case reports, commentary, erratum, replies, and stud-
ies without abstracts. Before 2000, there were few NLP 
studies. Therefore, we included all abstracts published 
between January 2000 and December 2020. Multiple 
steps are involved in the study. First, we classified NLP 
abstracts based on their text source (e.g., social media 
versus clinical notes). After optimizing retrievable mean-
ingful classes of abstracts, a finalized training dataset 
was created. Next, we calculated the classification accu-
racy of the computer algorithm using the entire corpus. 
As a final step, we applied the algorithm to obtain the 
classes and visualized them. The last author (S. S.) ran-
domly selected 100 abstracts from PubMed and classi-
fied their text sources, the context of use (e.g., abstracts 
pertaining to clinical decision support vs. those related 
to NLP method development), and the type of medical 
conditions studied. Using these primary classes, the lead 
author (S. M.) and third author (N. S.) explored more 
classes and categories for each of these classes in fur-
ther PubMed abstracts. By adding more abstracts, they 
continued to find more classes and subgroups until they 
were unable to find any more classes and subgroups. The 
saturation process was completed after reviewing 485 
abstracts. All authors discussed and optimized the clas-
sification iteratively until they reached an agreement on 
the final classification. In Table  1, the finalized classes 
and their definitions are described.

Analysis
As depicted in Fig. 1, machine learning algorithms were 
used to classify abstracts in the final corpus into those 
obtained from the trained dataset. By fine-tuning the 
pre-trained language models ubiquitous in modern 
NLP, we followed the favored approach. BERT, or Bidi-
rectional Encoder Representations from Transformers, 
is a language model developed by Google [8]. The mod-
els are pre-trained on large corpora and then fine-tuned 
using task-specific training data by reusing the parame-
ters from the pre-trained models. We used the BioBERT 
model [9] from the Hugging Face Transformers library 
[16], which was trained on abstracts from PubMed and 
full articles from PubMed Central. Then we fine-tuned 
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three different models, one for each of our targets: text 
source, context of use, and primary research fields. The 
hyper-parameters, such as the learning rate and num-
ber of epochs, were selected using cross-validation. 
The final model was trained on the entire training data 
using the optimized hyperparameters. Since we utilized 
a pre-trained BioBERT model, a standard GPU, such as 
the Nvidia Tesla K80, was sufficient for fine-tuning the 
model during both the training and inference phases. 
All the experiments were conducted in a Google Colab 
environment leveraging this GPU.

For each target variable, we fine-tuned three differ-
ent classifiers as an alternative method of improving 
the models’ accuracy. Repeating the fine-tuning pro-
cess resulted in a different classifier due to different data 
batches used during training. The final prediction for an 
input article was obtained by majority voting of the base 
classifiers’ predictions. Afterwards, the trained models 
were applied to the entire corpus. A set of 362 randomly 
selected abstracts was manually annotated by the lead (S. 
M.), third (N. S.), and last author (S. S.) to evaluate the 
labels provided by the trained models. Next, the human 

Table 1  Definitions used in classifying the NLP abstracts

NLP ; natural language processing, ICD ; International Classification of Diseases

Context of Use:
 Clinical decision support and similar fields
  Studies involved NLP used in diagnosis, prognosis, treatment, outcome, or epidemiological information of a disease (e.g., trend analysis)

 NLP method advancement
  NLP studies with a new NLP method introduced 

 Other medical fields
  Medical studies, not categorized in ICD-11 as a disease. These studies include complementary medicine, radiation oncology, nuclear medicine, 

physician-patient relations, drug research and development, patient-physician communication, chronic diseases,   radiology, dentistry, research, 
pharmacovigilance, bacterial culture, and antimicrobial susceptibility reports, pharmacology, trend analysis, health education, vaccination, vaccine 
research, and clinical term normalization

 Bioinformatics
  NLP used in bioinformatics

 Waste basket collections
  Articles not related to medicine 

Text Source:
 Not related
  Studies not related to medicine 

  Medical studies not associated with NLP

 Electronic medical/health and similar databases
  Studies when NLP ran on Electronic Medical/Health Records or similar databases

 Published medical evidence
  Studies with NLP ran on published medical texts (e.g., published peer-reviewed articles)

 Interview
  Studies with the source being data extracted from interviews (e.g., patient interviews)

 Not defined
  The text source was not identifiable

 Questionnaire
  Data extracted from questionnaires

 Social media
  Social media used as a source

 Website
  Website data such as Wikipedia as a source

 Omics databases
  Source being data extracted from omics repositories

Primary Research Field:
  All medical conditions indexed in ICD-11 22-item chapters
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annotations were compared to those provided by the 
models. The evaluation showed that the trained models’ 
accuracy in classifying abstracts into the text source, the 
context of use, and the primary research field was suf-
ficient, mainly to track the time trends of the classes. 
Therefore, we assumed that misclassifications would 
remain constant over time. Our next step was to fit mod-
els that indicated publication growth rates for different 
study subgroups using ordinary least-squares regression. 
Citations were the dependent variable, and publication 
year was the predictor. Per year, the coefficient of the pre-
dictor showed an average increase in citations. A squared 
term for the publication year was added to the primary 
model to determine if the growth was linear or exponen-
tial. The increase in R2 indicated logarithmic growth. The 
average annual growth rate (AAGR) was calculated by 
averaging all annual growth rates (AGR) over the study 
period (sum of AGRs/number of periods). We calculated 
AGR as the difference between the current year’s value 
and the past year’s value divided by the past year’s value.

We report a micro f1-score to evaluate the trained 
models. The f1-score is calculated as the harmonic mean 
of precision and recall for the positive class in a binary 
classification problem.

True positive (TP) and true negative (TN) are the num-
bers of samples correctly assigned to the positive and 
negative classes, respectively. On the other hand, false 
positive (FP) and false negative (FN) are the numbers 
of samples that are wrongly assigned to the positive and 
negative classes, respectively. Accuracy is the ratio of the 
samples correctly assigned to their respective classes.

Precision (P) and recall (R) are calculated as follows if 
TP, FP, and FN represent the number of true-positive, 
false-positive, and false-negative instances, respectively:

And f1-score will be as follows.

The average of the f1-scores obtained for different 
classes is computed for multiclass problems, such as 
ours. We report the weighted average considering the 
number of instances in each class in order to account for 
label imbalance.

Results
Based on the evaluation, the trained models classified 
abstracts accurately into their text source, context, and 
primary research field (disease area) by 78.5%, 77.3%, 
and 87.6%, respectively. Accordingly, the trained models’ 
micro f1-scores for classifying abstracts into their text 
source, context of use, and primary research field were 
77.35%, 76.24%, and 85.64%, respectively. We retrieved 
22,294 English abstracts from the database. There were 
12,817 references left after removing 8815 duplicates, 500 
articles without abstracts, 32 errata, 31 commentaries, 

P =
TP

TP + FP

R =
TP

TP + FN

f1 =
2PR

P + R

Fig. 1  Overview of the proposed machine learning approach
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31 editorials, and 68 veterinary-related abstracts. The 
selected analyses were based on 12,161 abstracts, exclud-
ing those published in 2021. Figure  2 illustrates the 
abstract selection process for creating the final abstract 
collection. NLP publications have increased logarithmi-
cally since 2000, as shown in Fig. 3.

The Additional file  2 conveys the total number of 
abstracts retrieved for each subgroup. Table  2 shows 
the AAGR and average growth slope (coefficient) with 
a 95% confidence interval. It also displays the adjusted 
R2 of the regression model with and without a squared 
term for the publication year. The AAGR was 20.99%, 
with an average increase of 72 (95% CI: 56.80–78.30) 
publications per year. According to the adjusted R2 of 
83%, the publication number is strongly affected by 

time. After adding a squared term for publication year, 
the indicator increased to 93%, indicating logarithmic 
growth. In all types of NLP text sources, electronic 
medical or health records or similar electronic clinical 
notes accounted for the highest percentage (57.12%). 
The addition of published articles and other sources of 
medical evidence accounted for 33.84% of all NLP text 
sources. Social media, including websites and data-
bases with omics data (e.g., genomics), accounted for 
less than 10% of all NLP text sources (Table 2). Figure 4 
displays the relative proportions and growth trends of 
four specific subgroups of text sources since the year 
2000. Additionally, it presents the percentage represen-
tation of these chosen subgroups within the total for the 
“context of use” of the text sources. Despite comprising 

Fig. 2  PRISMA flowchart illustrating the steps of abstract selection for building the final corpus. *For most analyses, we excluded abstracts 
for the year 2021, leaving 12,161 abstracts in the analysis data



Page 6 of 9Masoumi et al. Systematic Reviews          (2024) 13:107 

only 4.91% of publications, the so-called omics text data 
exhibited the fastest growth (AAGR​ = 65.08%) among all 
other text sources.

Changes in the dominant primary research fields 
since 2000, along with the expansion rates, as well as 
the distribution percentages for specific subcategories 

within “context of use” and “text source,” are illustrated 
in Fig. 5. Four medical fields accounted for slightly over 
65% of all the research NLP researchers conducted and 
published (neoplasms, mental conditions, infectious 
diseases, and circulatory diseases). Neoplasms topped 
this list. The growth rates of all these medical fields 

Fig. 3  Trend analysis of 12,817 abstracts showing the overall trend of the growth and the number of articles per year

Table 2  Linear regression of the subgroups of each class

NLP; natural language processing

Average 
annual 
growth rate

Proportion Coefficient for the year 
of publication (95% CI)

p-value Adjusted R2 Adjusted R2 (model 
with year squared)

All 20.99% 100% 72.01 (56.8–78.3)  < 0.001 0.83 0.93

Primary research fields

  Certain infectious or parasitic diseases 42.84% 9.84% 3.46 (1.92–4.90)  < 0.001 0.514 0.697

  Mental, Behavioral, or Neurodevelopmen-
tal disorders

39.28% 16.27% 6.23 (4.28–8.19)  < 0.001 0.686 0.932

  Neoplasm 42.41% 27.66% 9.8377 (7.498–12.18)  < 0.001 0.793 0.955

  Diseases of the Circulatory System 49.04% 11.27% 3.78 (2.918–4.648)  < 0.001 0.805 0.912

Text sources

  Electronic Medical/Health and Similar 
databases

25.41% 57.12% 30.87 (23.33–38.41)  < 0.001 0.784 0.931

  Published Medical Evidence 31.52% 33.84% 13.07 (11.247–14.9)  < 0.001 0.918 0.935

  Social media + Website 51.03% 4.13% 3.133 (1.86–4.41)  < 0.001 0.56 0.874

  Omics databases 65.08% 4.91% 1.66 (1.07–2.25)  < 0.001 0.627 0.637

Context of use

  Bioinformatics 69.65% 15.66% 5.26 (4.23–6.29)  < 0.001 0.849 0.853

  Clinical Decision Support and Similar 
fields

32.12% 25.45% 19.25 (13.42–25.09)  < 0.001 0.7 0.94

  NLP Method Advancement 31.76% 10.47% 7.09 (4.83–9.35)  < 0.001 0.678 0.896

  Other Medical Fields 19.44% 48.42% 21.72 (17.486–25.96)  < 0.001 0.851 0.888
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were comparable (Table 2 and Fig. 5). NLP methods for 
clinical decision support were the most notable identifi-
able application among different aims (called “context of 
use”) of NLP studies, accounting for 25.45% of all pub-
lications. In contrast, bioinformatics-related discover-
ies showed the highest growth (AAGR​ = 69.65%) among 
all medical NLP applications, in line with the highest 
growth of omics databases. Among the subgroups under 
“context of use,” the majority belonged to “other medical 
fields,” which included a wide range of medical appli-
cations. Changes in the “context of use” since the year 
2000, including its proportion and growth, along with 
the percentage representation of specific subgroups 
within the “text source,” are depicted in Fig. 6 (Table 2 
and Fig. 6).

According to Fig.  5, clinical decision support appli-
cations and electronic medical/health records had the 
highest proportion of context of use and text source for 
each subgroup of primary research fields. The propor-
tion of text source and context of use subtypes varied sig-
nificantly across medical fields. For instance, published 
papers on NLP method advancement accounted for the 

highest percentage (35%) of ICD-11 codes for mental, 
behavioral, and neurodevelopmental disorders. Similarly, 
social media was used more frequently (17%) in certain 
infectious or parasitic diseases than in any diseases desig-
nated by ICD-11 codes.

Discussion
Yu Zhu et  al. [13] used output-modified BioBERT 
pre-trained with PubMed and PMC and obtained an 
f-score of 80.9, like ours. Elangovan et  al. [11] found a 
lower f-score in a similar study. The other two systematic 
reviews observed a similar upward trend in using NLP 
in various medical fields over the last two decades [14, 
15]. In 2000, medical NLP publications began to appear 
prominently in peer-reviewed journals. This study shows 
BioBERT can spot an expected result reported in previ-
ous studies.

We were particularly interested in the type of text 
sources used in medial NLP, the type of medical con-
ditions studied, and the motivation behind perform-
ing NLP. Three published bibliographic studies shared 
some features with ours. Using PubMed data, Chen 

Fig. 4  Proportion and growth of four selected subgroups of text source since the year 2000 and percentage of selected subgroups of the “context 
of use” of the total for the subgroups of text source

Fig. 5  Proportion and growth of the most prevalent primary research fields since the year 2000 and the percentage of selected subgroups 
of the “context of use” and the “text source” of the total for the subgroups of the primary research field

Fig. 6  Proportion and growth of the “context of use” since the year 2000 and the percentage of selected subgroups of the “text source” of the total 
for the subgroups of the “context of use”
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et  al. examined 1405 papers over 10 years (2007–2016) 
and reported country-region, author-affiliation, and the-
matic NLP research areas [14]. Using PubMed data from 
1999 to 2018, Wang et  al. identified 3498 publications. 
Additionally, country-regions, author affiliations, dis-
ease areas, and text sources were reported [15]. Similar 
to Wang [15] and Chen [14], Chen et al. [17] used NLP 
methods to explore a similar set of variables; however, 
the authors focused only on NLP-enhanced clinical trial 
research. PubMed, Web of Science, and Scopus were 
searched for 451 published articles from 2001 to 2018. 
We selected 12,817 peer-reviewed citations using a dif-
ferent approach than typical bibliographic methods. We 
systematically scanned four chief article datasets and 
manually classified citations based on three variables: 
primary research fields, text source used, and motivation 
for NLP (context of use). In addition, we used BioBERT 
of Google as a preferred NLP method to assign sub-
groups to our variables.

Unlike typical bibliometric research, we were not inter-
ested in regional or institutional distributions, typical 
features of bibliometric research. Instead, we explored 
the hows and whys of medical NLP research over the past 
two decades.

According to our results, annual medical NLP publi-
cations grew by roughly 21% between 2000 and 2020 on 
average, similar to the nearly 18% growth. Chen et  al. 
reported between 2007 and 2016 [14]. According to 
Wang et al. [15] and Chen et al. [17], medical NLP pub-
lications increased rapidly between 1999 and 2017. The 
logarithmic progression of the citations in our study can 
partly be explained by the annual increase of over 65% 
in NLP studies using omics datasets. Nearly 27% of all 
NLP research was conducted on neoplasms, mental con-
ditions, infectious diseases, and circulatory diseases. 
Similarly, Wang et  al. retrieved around 25% of their 
citations from neoplasms [15]. Previous authors have 
not explained why medical NLP citations are unequally 
high in cancer and a limited number of other fields, 
like mental health. The same is valid for why particular 
medical conditions are at the center of medical commu-
nity researchers, while EHR (electronic health records) 
or EMR (electronic medical records) massive data must 
be equally available for all medical conditions propor-
tional to their prevalence. In the case of cancers and 
infectious lung disease, however, unstructured text may 
convey more information because of pathology or radi-
ology reports. We can potentially apply medical NLP to 
broader clinical and research settings by studying the 
systematic differences across medical conditions from an 
NLP standpoint.

There are strengths and weaknesses to our approach. 
We began by categorizing medical conditions hierar-
chically using a systemic strategy. To identify primary 
research fields, we used ICD-11’s top-level taxonomy. In 
the future, if NLP studies follow the same procedure, the 
findings will remain comparable. We chose the BioBERT 
model from various pre-trained language models, 
including ClinicalBERT and BlueBERT. BioBERT can 
train with 4.5 billion biomedical words from Pub-
Med abstracts and 13.5 billion words from PMC full-
text articles. Compared to similar BERT models, NLP 
researchers are more involved with BioBERT. Hence, 
we recommend comparing the performance of various 
BERT models before selecting a model if an NLP special-
ist is not confident enough to choose the proper model. 
Finally, we publish the method for developing the analy-
sis database (NLP corpus) based on medical systematic 
review guidelines. Future research can use this approach 
to confirm whether NLP can replace systematic litera-
ture reviews.

A potential shortcoming of our study was the idiosyn-
cratic nature of the initial classification used for training 
the machine. Using our experience with observational 
datasets, such as electronic clinical notes and NLP appli-
cations, to analyze unstructured clinical data, we began 
building the initial subgroups. Nevertheless, to mitigate 
the risk of bias, we dissected the published studies cumu-
latively until more studies could not update the evolving 
classification. Our models’ estimated classification accu-
racy may have been adequate because of this strategy. 
The model can be fine-tuned based on more annotated 
articles, the hyper-parameters can be tuned more thor-
oughly, and multi-task learning can be explored instead 
of training separate models for each task. Additionally, 
the accuracy may improve further after the training data-
set is expanded. Finally, we only included abstracts writ-
ten in English. Results and conclusions may be influenced 
if relevant research published in languages other than 
English is excluded.

Conclusions
This study aimed to evaluate the performance of BioBERT 
as a tool to substitute manual abstract review using a 
language model. BioBERT is an acceptable method for 
abstract selection for systematic literature searches since 
it uses a uniform and human-independent algorithm that 
reduces the time required for manual abstract selection 
and increases inter-study reliability.
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