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Abstract 

Background Soil transmitted helminth (STH) infections are estimated to impact 24% of the world’s population 
and are responsible for chronic and debilitating morbidity. Disadvantaged communities are among the worst affected 
and are further marginalized as infection prevalence fuels the poverty cycle. Ambitious targets have been set to elimi-
nate STH infections, but accurate epidemiological data will be required to inform appropriate interventions. This paper 
details the protocol for an analysis that aims to produce spatial prediction mapping of STH prevalence in the Western 
Pacific Region (WPR).

Methods The protocol follows the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocol 
(PRISMA-P) guidelines. The study design will combine the principles of systematic review, meta-analysis, and geo-
spatial analysis. Systematic searches will be undertaken in PubMed, Scopus, ProQuest, Embase, and Web of Sci-
ence for studies undertaken post 2000, to identify surveys that enable the prevalence of human STH infection 
within the WPR to be calculated. Covariate data for multivariable analysis will be obtained from publicly accessible 
sources. Survey data will be geolocated, and STH prevalence and covariates will be linked to produce a spatially refer-
enced dataset for analysis. Bayesian model-based geostatistics will be used to generate spatially continuous estimates 
of STH prevalence mapped to a resolution of 1  km2. A separate geospatial model will be constructed for each STH 
species. Predictions of prevalence will be made for unsampled locations and maps will be overlaid for each STH spe-
cies to obtain co-endemicity maps.

Discussion This protocol facilitates study replication and may be applied to other infectious diseases or alternate 
geographies. Results of the subsequent analysis will identify geographies with high STH prevalence’s and can be used 
to inform resource allocation in combating this neglected tropical disease.

Trial registration Open Science Framework: osf.io/qmxcj.
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Background
Neglected tropical diseases (NTDs) are a disparate group 
of 20 diseases that have a devastating impact upon the 
lives of more than one billion people [1]. Soil transmitted 
helminth (STH) infections are the most widespread NTD 
and are estimated to impact 24% of the world’s popula-
tion [2, 3].

Multiple species of STH, including Ascaris lumbri-
coides (roundworms), Trichuris trichiura (whipworms) 
and Necator americanus, Ancylostoma duodenale and 
zoonotic Ancylostoma ceylanicum, Ancylostoma cani-
num, and Ancylostoma braziliense (hookworms), are 
typically classified as a group due to diagnostic and treat-
ment similarities [2]. This group of STHs prevail in the 
tropics and subtropics and have their greatest impact 
on disadvantaged communities where hygiene and sani-
tation are inadequate [2]. Strongyloides stercoralis and 
Strongyloides fuelleborni (threadworms) are another 
pathogenic STH of significance to human health, which 
are differentiated by an auto-infective capability within 
the lifecycle [4, 5].

STH infections result in chronic and debilitating mor-
bidity, the extent of which is relative to the worm burden 
and influenced by host age and immunity [6]. Symptoms 
of STH infection include malnutrition, malaise, impaired 
physical and cognitive development, anemia, and intes-
tinal obstruction [2, 7]. Symptoms of STH infection are 
often hard to identify due to the impact of poverty, mal-
nutrition, and comorbidities which are common among 
those worst affected [8]. A key World Health Organiza-
tion (WHO) STH control strategy is the administra-
tion of anthelmintic chemotherapy to at-risk population 
groups living in endemic areas [2]. At-risk populations 
include preschool children (PSAC), school age children 
(SAC), women of reproductive age, and personnel under-
taking high-risk occupations [2]. The WHO recommends 
annual administration of anthelmintic chemotherapy to 
at risk populations where community infection preva-
lence exceeds 20% and bi-annual chemotherapy where 
prevalence > 50% [9].

“Ending the neglect to attain the Sustainable Devel-
opment Goals; a road map for neglected tropical dis-
eases 2021–2030” [10] is a World Health Organization 
(WHO) roadmap that aims to strengthen the response 
to eliminating NTDs [11]. Milestones within this road-
map include the elimination of STH infection as a public 
health problem in 96 countries by 2030 [10]. STH infec-
tion is defined as a public health problem, when the prev-
alence of moderate-to-heavy intensity infections > 2% in 
PSAC and SAC [12]. The roadmap approach is based on 
three pillars, including Pillar I, which seeks to accelerate 
programmatic actions through a thorough understanding 
of disease epidemiology [13].

This study aims to evaluate the prevalence of STH 
infections within the Western Pacific Region (WPR) by 
combining the principles of systematic review, meta-
analysis, and geospatial analysis. This analytical approach 
has been shown to provide a cost-effective solution to 
determining STH distribution in sub-Saharan Africa [14], 
South America [15, 16], and South-East Asia [17]. but 
to our knowledge, this approach has not been applied to 
the WPR. Understanding infection prevalence is key to 
informing interventions, such as mass drug administra-
tion (MDA) which is the primary focus of the WHO STH 
control strategy [18].

This study aims to evaluate the prevalence of STH 
infections within the WPR and is designed to inform the 
prioritization of resources to address STH burden. The 
specific objectives of the study include the production of 
spatial prediction of STH prevalence and the evaluation 
of the spatial co-distribution and co-infection of ascaria-
sis, trichuriasis, hookworms, and strongyloidiasis in the 
WPR. The environmental and climatic factors that influ-
ence the spatial distribution of STH infection within the 
WPR, will also be identified.

Methods
Data sources and search strategy
This protocol follows the Preferred Reporting Items 
for Systematic Review and Meta-Analysis Protocols 
(PRISMA-P) guidelines [19] (Additional file  1) [20]. 
Should there be a requirement to amend this protocol, 
the date and detail of each amendment will be described. 
The systematic review will be undertaken in accordance 
with the PRISMA-P statement [21] (Additional file 2).

A comprehensive systematic search for epidemiologi-
cal surveys undertaken from 2000 and published up to 
31 October 2023 will be undertaken in five biomedical 
databases: PubMed, Scopus, ProQuest, Embase, and Web 
of Science. The search will include grey literature and 
regional databases, and the reference lists from relevant 
studies will be hand-searched. Forward and backward 
citation searching will be used to identify related articles 
using Google Scholar. The WHO regional classification 
system will be used to define the countries within the 
WPR [22]. For each of the 37 countries within the WPR 
[22], the following search terms will be applied: “soil 
transmitted helminth*” OR STH OR Ascaris OR Trichuris 
OR Nectator OR Ancylostoma OR “Strongyloides stercor-
alis” OR “Strongyloides fuelleborni” OR hookworm* OR 
roundworm* OR whipworm* OR threadworm*.

Study selection
Studies identified from the systematic search will be 
uploaded into Endnote X9 (Clarivate Analytics) and 
duplicates removed. The title and the abstracts will be 
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independently reviewed by two authors (BG and TT) 
on Rayyan QCRI [23], and short-listed full text articles 
then evaluated against the eligibility criteria. Any disa-
greements in the short-listing process will be resolved 
through discussion, and in the event that consensus can-
not be reached, dialogue will be undertaken with a third 
author (EG).

Studies are required to meet the following inclusion 
and exclusion criteria:

Inclusion criteria are as follows:

– Studies that relate to human infection and include 
the following STH species: A. lumbricoides (round-
worms), T. trichiura (whipworms), N. americanus, A. 
duodenale, A. ceylanicum, A. caninum, and A. bra-
ziliense (hookworms) and S. stercoralis and S. fuelle-
borni (threadworms).

– Surveys with random sampling techniques that 
report sufficient data to facilitate the calculation of 
STH prevalence.

– Studies conducted within the WPR as defined by the 
WHO regional classification system [22].

– Where studies undertake surveys pre and post inter-
vention regimes, only pre-intervention baseline data 
will be recorded. Subsequent baseline studies will 
identify the effectiveness of previous interventions.

Exclusion criteria are as follows:

– Case studies.
– Case series with < 10 people.
– Conference abstracts, posters, and scientific corre-

spondence.
– Literature or systematic reviews.
– The geographic location of the survey is not provided 

at a higher resolution than regional level (i.e., country 
level reports will be excluded).

– Surveys that do not represent the general population 
or PSAC/SAC.

– Transient populations that do not represent the 
geography in which they are surveyed, e.g., recent 
refugee arrivals.

– Due to resource constraints, articles not published in 
English.

Data extraction
Two authors (BG and TT) will independently extract data 
from the included studies into a Microsoft Excel (version 
2016) spreadsheet. The data extraction spreadsheet will 
be piloted on five papers and refined if required. The pro-
posed data extraction tool is provided in Additional file 3.

Where available, the following data will be extracted for 
each eligible study: first author, year of publication, year 
of study, study location including the name of the admin-
istrative region and longitude and latitude co-ordinates 
in decimal degrees format (with conversion done where 
required), study site (e.g., school, community), number 
of people screened for STH, number of people diagnosed 
with STH infection, species of STH, infection intensity 
(eggs/gram or WHO classification), diagnostic method, 
sample type, number of samples taken and analyzed per 
participant, demographic factors (age, sex), prevalence 
of co-infection, and name of co-infectious agent. The 
authors of the relevant papers will be contacted should 
there be a need for additional information. In the event 
that there are duplicate surveys for a given location, the 
study with the most recent and greatest amount of data 
will be included within the analysis.

Methodological quality and publication bias assessment
A modified version of the Newcastle-Ottawa Quality 
Assessment Scale [24], Additional file 4, will be used by 
two authors (BG and TT) to evaluate the methodologi-
cal quality of the included studies. To ensure agreement 
between the two researchers, the quality assessment tool 
will be piloted on 10 randomly selected studies, and any 
differences in opinion will be resolved through discus-
sion with a third author (EG). The quality assessment 
(QA) scores range from 0 to 9; scores between 1 and 4 
will be defined as low quality, scores between 5 and 7 will 
be defined as medium quality, and scores between 8 and 
9 will be defined as high quality. A sensitivity analysis will 
be employed to evaluate the impact of methodological 
quality upon results of the review.

Potential publication bias and small study effects will 
be detected with funnel plots. Egger’s method will be uti-
lized to evaluate asymmetry, and publication bias will be 
considered significant when p ≥ 0.05 [25].

Covariate data sources
Covariate data for multivariable analysis will be obtained 
from publicly accessible records. Population data will 
be obtained from World Pop [26], and information on 
health care accessibility will be obtained from the Malaria 
Atlas Project (MAP) [27]. Data on climatic variables such 
as mean temperature, precipitation, and solar radiation 
will be obtained from the Global Climate Database [28]. 
Data on altitude will be obtained from the Shuttle Radar 
Topography Mission (SRTM) [29], and polygon shapefiles 
for the administrative boundaries of each country will be 
obtained from the Data-Interpolating Variational Analy-
sis (DIVA)- Geographic Information System (GIS) [30].
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Geocoding
Extracted STH survey data will be geolocated to a spe-
cific coordinate of latitude and longitude (in decimal 
degrees format) where possible or the smallest poly-
gon available otherwise (village or district). When the 
STH prevalence survey data are reported at a district 
level, coordinates of the district centroid will be used 
for georeferencing. Village locations will be identified 
using Google Maps. In instances when the STH preva-
lence survey has been reported at a district level (i.e., a 
polygon), a centroid that is spatially weighted according 
to population density will be used. The survey locations 
for each study will be stored in a geographical infor-
mation system, ArcGIS (ESRI, Redlands, CA, USA). 
Data on STH prevalence and covariates will be linked 
according to a location using ArcGIS, to produce a spa-
tially referenced dataset for analysis.

Geospatial analysis
Bayesian model-based geostatistics (MBG) will be 
used to generate spatially continuous estimates of the 
national prevalence of each STH mapped at a resolu-
tion of 1  km2. Within the MBG framework, a logistic 
regression model will be fitted to the prevalence data 
using both fixed covariate effects and random spa-
tial effects. Covariates for the spatial model will be 
selected using a fixed-effects logistic regression model 
(with an exclusion criterion of Wald p > 0.2). Covari-
ates included in the model will be selected based on 
evidence of association with STH infection from previ-
ous studies and based on the availability of region-wide 
representative data. Before fitting the model, all covari-
ates will be checked for multi-collinearity using vari-
ance inflation factors (VIF). Those variables with a VIF 
greater than 6 will be excluded from the final model.

Different geospatial models will be constructed inde-
pendently for each species of STH. Here, we present 
how the model for the prevalence of a single species of 
STH will be constructed, but the approach will be iden-
tical for the other STH species. A Bayesian geospatial 
model will be fitted for the prevalence survey data that 
includes covariates (fixed effects) and spatial effects 
[31]. The proportion of cases at each surveyed loca-
tion j will be the response variable and will be assumed 
to follow a binomial distribution:  Yj~Binomial  (nj, pj), 
where Yj is the observed prevalence of infection, nj is 
the number of individuals testing for infection, and pj is 
the predicted prevalence at location j, with j = (1, …, n). 
The predicted prevalence will be associated via a logit 
link function to a linear predictor defined as follows:

where α is the intercept, β is a matrix of covariate coef-
ficients, X is a matrix of Z covariates, and ζj  is a spatial 
random field modelled using a Gaussian process with 
mean 0 and a Matérn covariance function. The covari-
ance function will be defined by two parameters: the 
range ρ, which represents the distance beyond which 
correlation becomes negligible, and σ will be the mar-
ginal standard deviation [32, 33]. Due to the Bayesian 
characteristics of the geospatial model, priors need to be 
defined for all parameters (and hyperparameters) in the 
model. Non-informative priors will be used for α (uni-
form prior with bounds –∞ and ∞), and we will set nor-
mal priors with mean = 0 and precision (the inverse of 
the variance) = 1 ×  10−4 for each βz. We will use default 
priors for the parameters of the spatial random field [34]. 
Parameter estimation will be done using the Integrated 
Nested Laplace Approximation (INLA) approach in R 
(R-INLA) [32, 33]. A relatively large number of samples 
(15,000 samples) will be computed to ensure that a sat-
isfactory characterization of the posterior distribution of 
all parameters can be obtained.

Prediction maps
Predictions of the prevalence of each infection at unsam-
pled locations will be made at 1  km2 resolution by inter-
polating the spatial random effects and adding them to 
the sum of the products of the coefficients for the spa-
tially variant fixed effects at each prediction location. The 
intercept will be added, and the overall sum will be back-
transformed from the logit scale to the prevalence scale, 
providing prediction surfaces that show the estimated 
prevalence of disease for all prediction locations.

Co‑distribution
To obtain a co-endemicity map, the spatial predicted 
prevalence surface for each STH species will be overlaid 
in the GIS software. This process allows for the identifi-
cation of overlapping areas where the prevalence of two, 
three, or four species is above a selected threshold.

Discussion
NTDs exacerbate the disadvantage of those most com-
monly affected by fueling the poverty cycle [35]. Effica-
cious use of scare resources is pertinent for populations 
impacted by infection. Delivering the ambitious WHO 
STH 2030 targets [18] will require detailed epidemiologi-
cal data to inform resource allocation and prioritization.

logit pj = log
pj

1− pj
= α +

Z

z=1
βzXz,j + ζj ,
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Geospatial meta-analysis has been used to evaluate 
STH prevalence in other regions [14–17] and to evalu-
ate the distribution of other infections such as HIV [36], 
tuberculosis (TB) [37], malaria [38–40], cholera [41], and 
dengue [42]. This analysis approach enables the data from 
multiple surveys and their associated spatial components 
to be assimilated in one study [37]. Although geospatial 
meta-analysis provides advantages over separate analyses 
and increases the probability of making accurate estimates 
over geographical areas [37], it is acknowledged that com-
bining discrete data sets can introduce spatial biases.

The methodology proposed for this study provides an 
opportunity to maximize the impact of available data whilst 
also highlighting data gaps. It is hoped that the results will 
inform regional NTD policy and help STH control pro-
grams prioritize resource allocations within the region.
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