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Abstract 

We demonstrate the performance and workload impact of incorporating a natural language model, pretrained 
on citations of biomedical literature, on a workflow of abstract screening for studies on prognostic factors in end‑
stage lung disease. The model was optimized on one‑third of the abstracts, and model performance on the remain‑
ing abstracts was reported. Performance of the model, in terms of sensitivity, precision, F1 and inter‑rater agree‑
ment, was moderate in comparison with other published models. However, incorporating it into the screening 
workflow, with the second reviewer screening only abstracts with conflicting decisions, translated into a 65% 
reduction in the number of abstracts screened by the second reviewer. Subsequent work will look at incorporating 
the pre‑trained BERT model into screening workflows for other studies prospectively, as well as improving model 
performance.
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Introduction
In recent years, there has been a growth in interest in 
using artificial intelligence methods in systematic reviews 
(SRs) [1], in particular for the stage of literature screening 
[2]. As the number of titles and abstracts to be screened 
for suitability for inclusion in a review often involves 
numerous hours of repetitive work, semi-automation of 
this stage has been suggested to deliver workload and 
time savings with acceptable recall and precision [3–5].

One approach targets the automated classification of 
studies for inclusion using prediction models. In recent 
work, Aum et  al. developed a Bidirectional Encoder 
Representations from Transformer (BERT) algorithm 
that was pretrained on published SRs and fine-tuned on 
another SR, with good classification performance. The 
authors recommended generalizing the use of BERT-
based models for this purpose, by pre-training with 
information from a particular clinical domain and opti-
mizing the predictions for the individual review only at 
the last fine-tuning step [6]. In this letter, we demonstrate 
the performance and workload impact of incorporating a 
BERT model pretrained on citations of biomedical litera-
ture in our own abstract screening workflow.

Methods
We used abstracts retrieved from a previous literature 
search on prognostic factors in end-stage lung disease 
[7]. Bibliographic databases such as MEDLINE, Embase, 
PubMed, CINAHL, Cochrane Library and Web of 
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Science were searched using a pre-defined search strat-
egy and inclusion criteria (Additional file  1). A total of 
21,645 abstracts were retrieved, and based on screening 
by reviewers, 530 (2.5%) of the studies were included in 
the subsequent stage, where the full text of the articles 
was retrieved for thorough reading.

The dataset of 21,645 abstracts consisted of the text 
within the abstract, excluding the title, as well as an indi-
cation of whether the abstract was classified as included 
by the human reviewers. For model validation, the data-
set was split into a training set of 7142 abstracts (33%), 
and a test set of 14,503 abstracts (67%). We then used 
the training set to fine-tune a BERT model pretrained on 
citations from MEDLINE/PubMed (pBERT). A batch size 
of 64 was used, and convergence over 100 epochs was 
assessed [8].

We then applied the fine-tuned pBERT to the test set 
and labelled 2.5% of articles with the highest predicted 
probabilities of inclusion as included in the review by 
pBERT. Based on this set of labels, we assessed sensitiv-
ity, precision, F1 and accuracy of pBERT, as well as the 
proportion of conflicts and level of inter-rater agreement, 
which was measured by Cohen’s kappa (Table 1). We also 
report the reduction in workload in a hypothetical sce-
nario where pBERT performs screening as the second 
reviewer for 67% of the articles.

Results
Of the 14,503 abstracts in the test set, the human review-
ers deemed 355 (2.5%) to be relevant and suitable for 
inclusion in the subsequent stage of review. Sensitivity, 
precision and F1 of pBERT were 37.7%, while disagree-
ment occurred for 3.0% of all articles screened. Cohen’s 
Kappa was 0.70, indicating moderate agreement between 
the reviewers and pBERT (Table 1).

In the traditional screening process, each of the two 
human reviewers would have to screen all 21,645 arti-
cles for relevance to the study, before reviewing any 
conflicts in their decisions. With pBERT incorporated 
into the screening workflow, both reviewers would 

screen the first 33% of articles, and pBERT would be 
fine-tuned based on this training set.

For the remaining 14,503 articles, the first reviewer 
(R1) would screen all the articles in accordance with 
the traditional workflow. pBERT would then replace the 
second human reviewer (R2) in identifying studies for 
inclusion, while R2 would only step in to review arti-
cles with conflicting decisions. In this scenario, R1 and 
pBERT would have agreed on decisions for 14,061 arti-
cles, leaving 442 articles (3% of 14,503) for R2 to review. 
Hence, R2 would have to review only 7,584 articles 
(7,142 + 442) or 35% of the original 21,645 articles.

Discussion
We applied a BERT model pretrained on biomedical lit-
erature to our data, with moderate model performance. 
Having a sensitivity of 37.7% entails that pBERT can 
only be used as an assistant alongside a human reviewer 
to increase the efficiency of screening, as opposed to 
being a standalone tool for automation of screening. 
While pBERT did not perform as well in terms of tra-
ditional metrics compared to recent models [6, 9], our 
dataset did have a lower inclusion rate of 2.5%, com-
pared to 11% and 19% in both studies, impacting the 
predictive ability of the model.

Nonetheless, despite the constrained performance of 
pBERT, we were able to demonstrate that incorporat-
ing pBERT in our workflow would have reduced the 
workload of a second human reviewer to a third of the 
initial volume. Our results suggest that involving pre-
dictive tools to screen out irrelevant articles, which 
often comprise the bulk of the abstracts, can improve 
efficiency of screening processes in comparison to tra-
ditional approaches. However, while there is interest 
to fully automate the task of screening without human 
intervention, we emphasize that the role of a human 
reviewer remains pertinent to ensure all potentially rel-
evant articles are included in the study [10].

Table 1 List of performance measures assessed

Measure Definition Estimate

Recall/sensitivity Number of abstracts included by human reviewer and pBERT
Number of abstracts included by human reviewer   37.7%

Precision/positive predictive value Number of abstracts included by human reviewer and pBERT
Number of abstracts included by pBERT   37.7%

F1 2× precision×recall
precision+recall

37.7%

Accuracy Number of abstracts included by human reviewer and pBERT
Total number of abstracts screened

  70.2%

Disagreement Number of abstracts with different decisions by human reviewer and pBERT
Total number of abstracts screened

  3.0%
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Conclusion
For semi-automation of screening of literature on prog-
nostic factors in end-stage lung disease, we used a 
BERT model trained on biomedical literature to identify 
abstracts that were relevant to the topic and demon-
strated a substantial reduction in screening workload. 
Subsequent work will look at integrating the current ver-
sion of pBERT into screening workflows for other stud-
ies prospectively, as well as incorporating other ensemble 
methods to develop models with improved sensitivity to 
identify abstracts of relevance to the research question.
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