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Abstract 

Background The COVID‑19 pandemic has led to an unprecedented amount of scientific publications, growing at a 
pace never seen before. Multiple living systematic reviews have been developed to assist professionals with up‑to‑
date and trustworthy health information, but it is increasingly challenging for systematic reviewers to keep up with 
the evidence in electronic databases. We aimed to investigate deep learning‑based machine learning algorithms to 
classify COVID‑19‑related publications to help scale up the epidemiological curation process.

Methods In this retrospective study, five different pre‑trained deep learning‑based language models were fine‑
tuned on a dataset of 6365 publications manually classified into two classes, three subclasses, and 22 sub‑subclasses 
relevant for epidemiological triage purposes. In a k‑fold cross‑validation setting, each standalone model was assessed 
on a classification task and compared against an ensemble, which takes the standalone model predictions as input 
and uses different strategies to infer the optimal article class. A ranking task was also considered, in which the model 
outputs a ranked list of sub‑subclasses associated with the article.

Results The ensemble model significantly outperformed the standalone classifiers, achieving a F1‑score of 89.2 at 
the class level of the classification task. The difference between the standalone and ensemble models increases at the 
sub‑subclass level, where the ensemble reaches a micro F1‑score of 70% against 67% for the best‑performing stan‑
dalone model. For the ranking task, the ensemble obtained the highest recall@3, with a performance of 89%. Using an 
unanimity voting rule, the ensemble can provide predictions with higher confidence on a subset of the data, achiev‑
ing detection of original papers with a F1‑score up to 97% on a subset of 80% of the collection instead of 93% on the 
whole dataset.

Conclusion This study shows the potential of using deep learning language models to perform triage of COVID‑19 
references efficiently and support epidemiological curation and review. The ensemble consistently and significantly 
outperforms any standalone model. Fine‑tuning the voting strategy thresholds is an interesting alternative to anno‑
tate a subset with higher predictive confidence.
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Background
The pandemic coronavirus disease 2019 (COVID-19), 
caused by severe acute respiratory syndrome coronavi-
rus 2 (SARS-CoV-2), has led to a historic wave of scien-
tific publications in the biomedical literature [1, 2]. As 
of the beginning of the pandemic, scientific publications 
related to SARS-CoV-2 and COVID-19 came from the 
most diverse domains and became available in a myriad 
of digital repositories (preprint servers, technical reports, 
peer-reviewed scientific journals, etc.) [3]. This outbreak 
of publications grew at an unprecedented rate. In this 
context, it became challenging for medical experts and 
epidemiologists to follow the latest scientific develop-
ments and for curators to manually review and annotate 
all the available COVID-19 literature to consolidate the 
fast-moving existing body of knowledge [1].

Several methods for producing living systematic 
reviews have been proposed to provide up-to-date sup-
port for professionals dealing with the pace, amount, and 
complexity of the COVID-19-related literature [4–7]. A 
living systematic review describes a review methodology 
that allows updating information as soon as new evidence 
becomes available, rather than the methods applied to 
classic, time-restricted systematic reviews [8, 9]. Moreo-
ver, living evidence can narrow the gap between knowl-
edge and practice, as fresh publication findings are swiftly 
integrated in scientifically informed guidelines [5, 6, 9]. 
However, the maintenance of living evidence systems still 
requires continuous manual curation from highly quali-
fied human resources [10, 11]. One of the most time-
consuming tasks is to screen the titles and/or abstracts 
resulting from a literature search and to exclude articles 
that are clearly ineligible, which may comprise a third or 
more of all records [2].

To address this paradigm, (semi-)automatic curation 
systems based on text mining and natural language pro-
cessing (NLP) technologies have been developed to sup-
port review and annotation of large literature corpora 
[12–22]. These systems support the identification and 
ranking of relevant articles, the categorization of the 
selected documents in classes and subclasses for review-
ing procedures, and enable information extraction from 
text passages (e.g., identification of disease passages). For 
example, Textpresso Central [16] provides a platform that 
allows users to create a customized annotated corpus 
by uploading and processing documents of their choos-
ing. Once documents are loaded, personalized curation 
searches and pipelines can be applied. PubTator Central 
[19] is a service for viewing and retrieving bioconcept 
annotations in full-text biomedical articles. It comprises 
state-of-the-art text mining models for annotation of 
several biomedical entities, such as genes and proteins, 
diseases, chemicals, and species. SIBiLS [20] provide an 

optimized search engine in the biological literature by 
augmenting its contents with keywords and standard-
ized entities. Variomes [22] are a system that can perform 
triage of publication to support evidence-based deci-
sion. Finally, PubTerm [13] enables the organization of 
abstracts by terms, using the co-occurrence of terms or 
by specific phrases, among others, to facilitate the bio-
medical curation process.

Automatic text classification appears as an essential 
methodology to ensure high quality of living evidence 
updates. Text classification consists of assigning cat-
egorical labels to a given text passage (e.g., an abstract) 
based on its similarity to the existing labeled examples 
[23–25]. Classical text classifiers use statistical document 
representations, in which the relevance of a word to a 
document is proportional to its frequency in the docu-
ment and inversely proportional to its frequency in the 
collection (the so-called term frequency-inverse docu-
ment frequency (tf-idf ) framework), to create a vectorial 
representations of the documents [26]. These represen-
tations are then used in machine learning models, such 
as logistic regression and k-nearest neighbors, to learn a 
mapping function between the input text and the output 
classes [27, 28]. The trained models can then predict the 
predefined labels for new input representations. These 
models are however limited as they essentially fail to 
capture the sequential nature of text and the context in 
which words are embedded.

To overcome the limitations of the tf-idf framework, 
state-of-the-art text classifiers use deep learning-based 
language models to create word and document contex-
tual representations, with improved syntactic and seman-
tic features [29]. Language models are a particular type 
of probabilistic model that, given a sequence of words, 
compute the probability distribution of the next word. 
Recent deep learning-based language models, such as 
the Bidirectional Encoder Representations of Transform-
ers (BERT) [30], learn word representations considering 
both the forward- and backward-direction contexts of a 
word using a masked word approach, in which random 
words are masked from a context and the algorithm tries 
to predict the most likely hidden word. The models are 
then trained on large corpora, resulting in better word 
and document representations. These representations 
are further used as input to other NLP tasks, including 
text classification and question answering, in a process 
called transfer learning, which has resulted in significant 
improvements of the state-of-the-art performance in the 
past years [31].

In this article, we investigated the use of automatic 
text classifiers supported by deep learning-based lan-
guage models to enhance literature triage and annota-
tion in COVID-19 living systematic review systems. Our 
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analysis assessed the effectiveness of different individual 
deep learning-based language classifiers against two 
ensemble strategies, in which individual models are com-
bined using either the probability sum of the predictions 
or a voting strategy where each classifier has a voting 
right and the classification decision is given to the class 
obtaining a majority of votes [32–34].

Methodology
Study design
An overview of the study design is presented in Fig.  1. 
In this retrospective machine learning-based study, we 
evaluated the performance of different deep learning 
text classifiers to categorize COVID-19 literature accord-
ing to their publication type in the COVID-19 Open 
Access Project (COAP) living evidence database aggrega-
tor, which includes publications about SARS-CoV-2 and 
COVID-19 from PubMed, Embase, medRxiv, and bioRxiv 
[4]. Five individual classifiers were trained with the pub-
lication title, abstract, and source associated with anno-
tation categories of a living systematic review knowledge 
base. Publication title, abstract, and source were imputed 
to the original dataset whenever missing. Remaining 
publications without title or abstract were excluded from 
the training and evaluation sets. Then, at inference time, 
the classifiers were applied to individual records to pre-
dict the publication category as output. Two ensemble 
strategies were created using these predictions [32, 34]. 
The first strategy uses a voting system that takes each 
classifier output as a vote for a class, while the second 
considers the sum of the class probabilities attributed by 

the individual classifiers. For the voting strategy, different 
cutoffs for the minimal number of votes were applied to 
compute the final class associated with the publication.

Model training and evaluation were performed on a 
dataset of articles, which were annotated manually by a 
crowdsourced team of people with training in epidemiol-
ogy and systematic reviews [2]. Each article was manually 
classified across 22 sub-subclasses describing the type of 
COVID-19 publications according to their study design 
or article type (case report, ecological study, modelling 
study, editorial, etc.). The sub-subclasses are nested into 
three subclasses, namely epidemiologic study designs 
(EPI), basic biological or other laboratory-based research 
studies (BASIC) and other types of articles (OTHER). The 
subclasses are nested into two classes of original research 
(ORIGINAL) and articles that were commentaries, edito-
rials, or narrative literature reviews (NON-ORIGINAL). 
The source dataset is publicly available at https:// zika. 
ispm. unibe. ch/ assets/ data/ pub/ search_ beta/. To improve 
the robustness of the results, we trained and evaluated 
our models using a k-fold cross-validation methodology 
(k is set to 5 in our experiments). For each fold, 70% of 
the articles (~ 4.6 k publications) were used to train the 
model parameters, 10% unseen documents (dev set) were 
used to optimize the model hyperparameters, and the 
remaining 20% unseen documents (test set) were used to 
evaluate the performance of the classifier. The final per-
formance was obtained by averaging the results obtained 
on the k unseen test sets. We used standard classification 
metrics — precision, recall, F1-score, and area under the 
receiver operating characteristics curve (AUC-ROC)— to 

Fig. 1 Overview of the study design. All articles were manually annotated and then the title, abstract, and source retrieved. In a k‑fold 
cross‑validation setting (k is set to 5 in our experiments), 5 models were fine‑tuned, and each standalone model was compared against each other 
as well as against two types of ensemble

https://zika.ispm.unibe.ch/assets/data/pub/search_beta/
https://zika.ispm.unibe.ch/assets/data/pub/search_beta/
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assess performance of the individual models in compari-
son to the ensemble and the performance of the latter 
at different vote majority levels (i.e., simple and abso-
lute). The experiments were performed using the Python 
package Hugging Face on a Linux machine with a TPU 
(V3–8).

Dataset description and preprocessing
The COAP data snapshot version used in our experi-
ments contains 6365 publications annotated between 
7th January and 10th December 2020. Table 1 shows the 
distribution of publications across classes, subclasses, 
and sub-subclasses in the COAP snapshot dataset. The 
categories are imbalanced for the three categorization 
levels, as is typically the case for real-world data. Illus-
tratively, the BASIC: Within-host modelling sub-subclass 
composes only 0.5% of the collection (31 documents), 
while the OTHER: Comment, editorial, …, non-original 
sub-subclass is responsible for 27.6% (1758 documents). 
There are 799 documents for the BASIC subclass and 
3665 documents for the EPI subclass, which accounts 
for 57.6% of the dataset. At the class level, the ORIGI-
NAL class is responsible for 70.1% of the dataset, with the 
remaining documents (29.9%) being categorized accord-
ing to the NON-ORIGINAL class.

In the pre-processing phase, the title, abstract, and 
source fields were concatenated before being fed to a 
classifier, and each classification model used its own 
tokenizer in order to separate the free-text passages 
into tokens (words or sub-words) [39–42]. All model 
tokenizer specificities are given in their respective papers 
(see Table 2).

Classification models
In our experiments, we used the pre-trained models 
shown in Table 2, which were originally pre-trained using 

Table 1 Dataset document count and proportion by class, subclass, and sub‑subclass

Class Subclass Sub-subclass Count %

ORIGINAL EPI Case report 241 3.8

ORIGINAL EPI Case series 350 5.5

ORIGINAL EPI Case–control study 74 1.2

ORIGINAL EPI Cohort study 246 3.9

ORIGINAL EPI Cross‑sectional study 284 4.5

ORIGINAL EPI Diagnostic study 181 2.8

ORIGINAL EPI Ecological study 92 1.4

ORIGINAL EPI Guidelines 326 5.1

ORIGINAL EPI Modelling study 808 12.7

ORIGINAL EPI Other 130 2.0

ORIGINAL EPI Outbreak or surveillance report 133 2.1

ORIGINAL EPI Qualitative study 35 0.5

ORIGINAL EPI Review 725 11.4

ORIGINAL EPI Trial 40 0.6

ORIGINAL BASIC Animal experiment 43 0.7

ORIGINAL BASIC Basic research review 135 2.1

ORIGINAL BASIC Biochemical/protein structure studies 264 4.1

ORIGINAL BASIC In vitro experiment 85 1.3

ORIGINAL BASIC Sequencing and phylogenetics 241 3.8

ORIGINAL BASIC Within‑host modeling 31 0.5

NON‑ORIGINAL OTHER Other 143 2.2

NON‑ORIGINAL OTHER Comment, editorial, …, non‑original 1758 27.6

ALL 6365 100.0

Table 2 Pre‑trained models used in the experiments, the corpus 
type used in their training, and the number of parameters per 
model

Pre-trained models Corpus type # 
Parameters 
(M)

RoBERTabase [35] General 110

RoBERTalarge [35] General 340

COVID‑Twitter‑BERT [36] Bio (COVID‑19) 110

BioBERT [37] Bio 110

PubMedBERT [38] Bio 110



Page 5 of 16Knafou et al. Systematic Reviews           (2023) 12:94  

the masked language model task. In a masked language 
model task, large corpora, such as Medline or Wikipedia, 
are used to create low-dimensional word (or sub-words) 
representations in a context. In each training step, a sen-
tence taken from the corpus is provided to the model 
with (sub-)words masked. The model is then trained to 
predict the masked (sub-)words for that context. The 
resulting model encodes contextualized (sub-)words in a 
low-dimensional space, and optimal tensorial representa-
tions can then be used in downstream tasks, such as text 
classification, a process called transfer learning. Two out 
of the five models (RoBERTa-base and RoBERTa-large) 
were pre-trained on a general corpus, created using 
BookCorpus and Wikipedia, while three other models 
(COVID-Twitter-BERT, BioBERT, and PubMedBERT) 
were pre-trained on biomedical corpora. Among the 
models trained on biomedical corpora, one was pre-
trained on a COVID-19-related corpus, and one can be 
considered as large, gathering 340-M parameters. All 
specificities of the models can be found in their related 
literature (see Table 2).

Individual deep learning-based classifier for biomedical 
literature classification
Transformer models [43] with a fully connected per-
ceptron layer on top of the output attention layer were 
used to discriminate sub-subclasses of given documents. 
Using the pre-trained language model classifiers, knowl-
edge acquired by the model in the pre-training phase 
can be transferred to the specific task, during the so 
called fine-tuning phase, in which task-specific exam-
ples are given the original model so its parameters can be 
updated to the task at hand [30]. In our case, the specific 
classification task consists of fine-tuning the models on 
a subset (training set) of the manually annotated dataset, 
followed by the classification of documents from another 
unseen subset (test set) among the 22 sub-subclasses of 
the knowledge base. At the inference phase, the model 
extracts features from the document metadata (i.e., title, 
abstract, and source) and outputs a probability for each 
of the 22 sub-subclasses. As sub-subclasses are mutually 
exclusive, for a given document, the sum of all the prob-
abilities across sub-subclasses is equal to 1. Additionally, 
predictions with respect to the subclass and class levels 
were computed. To do so, the probabilities for sub-sub-
classes belonging to a subclass (or classes) are summed. 
In other words, the probability of a document to be clas-
sified in a given class is the sum of the probabilities for 
that document to be classified in all the sub-subclasses 
mapped to that class, mapping as per Table  1. The pre-
dicted category, i.e., class, subclass or sub-subclass, is 
then defined as the highest probability across all the pre-
dicted probabilities.

Figure 2 shows the publication classification workflow. 
The model starts with a publication containing a title, an 
abstract, and a source. The text contained in those three 
fields is concatenated, and a tokenizer splits it into tokens 
(e.g., words or sub-words). Each token is then linked to a 
token ID which allows the language model to look up for 
a vectorial representation of the said token. In our exam-
ple, the word “Study” is split into the “Stu” and “#dy” 
sub-words. “Stu” is the token ID number 51 and finds its 
vectorial representation in the 51th model matrix row. 
Once retrieved, the language model will receive its vec-
tor representation v51 as an input along with all the other 
token representations. The language model then gives the 
publication representation to a classifier, which outputs a 
probability for each sub-subclass.

Ensemble: voting and probability sum strategies
Assembling models can be performed by making indi-
vidual models vote for a category. In the default ver-
sion, the final category is defined by the higher number 
of votes. A threshold of votes which would trigger a 
voting ensemble prediction can also be used. In this 
setting, an unknown prediction, that is, the model is 
unsure about the category, is possible when there is a 
tie or when the number of votes is below the threshold 
(i.e., there is no unanimity). With this ensemble strat-
egy, only the class level (binary) is ensured to always get 
predictions with a threshold equal to 3 in our setting (5 
models). Alternatively, a probability sum strategy can 
be used to create the ensemble. The idea is to sum the 
probabilities of the classifiers for all the categories and 
then take the most probable category as the ensemble 
classification. If not stated otherwise, the probabil-
ity sum strategy would be the default ensemble as this 
method always gives a unique prediction in every situ-
ation. In Fig. 2, as an example, 3 out of 5 models pre-
dicted the EPI subclass, so the voting ensemble ended 
up predicting the EPI subclass. For the probability sum 
strategy, the sum of all subclass predictions among all 
the 5 models gives a score of 3.1 for the EPI subclass, 
which makes it the highest score among all the other 
subclasses. Even if in this case predictions are the same 
for both strategies, it is worth noting that it is not sys-
tematically the case.

Model interpretation
To get an insight of the model word impact, the integrated 
gradient [44] was performed using captum [45] imple-
mentation on the PubMedBERT model on the subclass 
level. According to this method, the higher a token scores, 
the more important it is to the prediction, and the score 
polarity implies the positive/negative classification impact. 
This experiment is twofold. First, about 600 never-seen 
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documents were classified, and the 20 highest positive 
impact words for each subclass prediction were reported. 
To deal with tokenized sub-words, a word score was com-
puted using the mean of all its sub-word compositions. 
Then, to reflect a more general impact of a given word for a 
subclass, each word was lemmatized, and the word score is 
computed as the mean of the respective lemmatized word 
scores. This way, a word and its plural would merge, for 
example, “simulation” and “simulations” would gather their 
scores and attribute their scores to the lemmatized word 
“simulation.” To avoid non-generalized high-impact words, 
only words with at least 5 occurrences were considered. In 
the second part of this experiment, a few publication scores 
were analyzed. To do so, the set of analyzed documents 
sampling was driven by the top-20 positive words statistics.

Statistical analysis
To evaluate our models, standard multiclass classification 
metrics were used, such as precision, recall, F1-score, and 
AUC-ROC [26]. Precision describes the proportion of cor-
rectly classified documents over all the documents being 
classified by the model to the same class:

precision =
tp

tp+ fp

where tp is the number of true positives and fp is the 
number of false positives. Recall describes the proportion 
of correctly classified documents among all the positive 
documents for given class:

where fn is the number of false negatives. Finally, 
F1-score can be formulated as the harmonic mean of the 
model precision and recall:

For these three metrics, the closer the result is to 
1, the better is the model performance. Lastly, AUC-
ROC computes the area under ROC, where the ROC 
plots the curve given a classification threshold of the 
tp rate (or recall or sensitivity) against the fp rate (or 1 
— specificity):

To get a confidence interval (CI) of the AUC-ROC, a 
bootstrapping with a sample of n = 2000 was computed. 

recall =
tp

tp+ fn

F1 =
2× precision× recall

precision+ recall

fprate =
fp

fp+ tn

Fig. 2 Publication classifier workflow. The model starts with the title, abstract, and source fields and concatenates their text contents before 
tokenizing it. Each model computes their predictions, and an ensemble strategy, voting or probability sum, combines them to get a final prediction
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The 2.5% and 97.5% values of the distribution were 
reported to get a 95% CI. The McNemar test is used for 
statistical significance testing [46].

In the ranking experiments, the model predicts a 
ranked list of sub-subclasses according to their probabili-
ties for a given input document. Thus, we use standard 
information retrieval metrics to report our results. The 
precision at ranking k (@k) is the precision across all 
the first k sub-subclasses returned by our classifiers. As 
it is a multi-class problem, each document belongs only 
to one true class; thus, the theoretical maximum preci-
sion is equal to 1/k. By analogy, recall@k is set across the 
first k sub-subclasses. Conversely to precision, the more 
k increases, the more the recall@k should be close to 1. 
As there are 22 sub-subclasses, by definition, recall@22 is 
equal to 1. Finally, the mean average precision (MAP) @k 
is the mean of all the average precisions (AP) @k, which 
is defined as follows:

where P(i) is the precision at i position, rel(i) is a func-
tion equal to 1 if the ith returned document is relevant 
and equal to zero otherwise, and NRelevant is the number 
of documents relevant for a given query. As our classifi-
cation problem is mutually exclusive, NRelevant is equal to 
1 and P@1 = R@1 = MAP@1. Compared to traditional 
classification metrics, which only consider the top model 

APk =

k
i=1

P(i)× rel(i)

NRelevant

prediction, the ranking metrics help us to understand 
how good are the top-k classification predictions.

Results
Classification performance
Tables 3, 4, 5 show the performance of the different mod-
els using the F1-score metric at the class, subclass, and 
sub-subclass levels, respectively. The ensemble outper-
formed the best standalone model significantly with a 
micro F1-score of 89% (Table 3). PubMedBERT obtained 
the best F1-score across the standalone models for all the 
classes. When comparing models to each other, there is 
no significant improvement. Although the improvement 
of the ensemble with respect to the PubMedBERT model 
is statistically significant, it accounts for less than a point 
for both the micro and macro F1-scores. At the subclass 
level (Table 4), similarly to the class level, the ensemble 
outperformed all single models significantly but in this 
case for more than a percentage point for both micro 
and macro F1-scores (86% vs. 85% micro F1-score and 
84% vs. 83% macro F1-score), and it is also consistently 
the best-performing model across all the subclasses. Pub-
MedBERT was again the overall best standalone model 
at the subclass level, with a micro and macro F1-scores 
of 85% and 83%, respectively. At sub-subclass level 
(Table  5), the ensemble significantly achieved the best 
micro and macro average F1-score (70% and 55%), hav-
ing the highest F1-score for 10 sub-subclasses, for which 
3 of the improvements were statistically significant. For 

Table 3 F1‑score performance for both the models and ensemble across all the classes

a Statistically significant improvement

Label F1-score (%)

RoBERTa base RoBERTa large BioBERT PubMedBERT COVID-Twitter Ensemble

ORIGINAL 91.06 91.33 91.44 91.94 90.61 92.35

NON‑ORIGINAL 78.46 79.19 79.64 80.52 76.72 81.66a

micro avg 87.30 87.70 87.92 88.53 86.46 89.16a

macro avg 84.76 85.26 85.54 86.23 83.66 87.00a

Table 4 F1‑score performance for both the models and ensemble across all the subclasses

a Statistically significant improvement

Label F1-score (%)

RoBERTa base RoBERTa large BioBERT PubMedBERT COVID-Twitter Ensemble

EPI 88.17 88.05 88.38 88.70 87.26 89.47

BASIC 78.15 78.85 79.20 78.13 78.36 80.47

OTHER 78.44 79.22 79.86 80.72 76.71 81.97a

micro avg 84.01 84.26 84.68 84.99 82.99 86.10a

macro avg 81.59 82.04 82.48 82.51 80.77 83.97a
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the standalone models, PubMedBERT had the best micro 
F1-score (67%), while RoBERTa-large presented the best 
macro F1-score (53%). The relevant gap between aggre-
gated scores (micro and macro F1-scores) from Tables 4 
and 5 suggests that there were more intra-level than 
inter-level misclassifications. In other words, misclassi-
fied sub-subclasses were often confused with sub-sub-
classes belonging to the same subclass. Finally, Table  6 
shows the AUC-ROC performance and their respective 
95% CI for each level. Here, the ensemble reports system-
atically a higher performance than any standalone model. 
When compared to BioBERT, the best standalone model 
in this metric, for each level, there is no CI overlap, con-
firming the statistically significant improvement by the 
ensemble model.

The worst-performing sub-subclasses 
(F1-score < 30.00), namely EPI: Other, BASIC: Basic 
research review, BASIC: Within-host modelling, and 
OTHER: Other, are all underrepresented in the dataset, 
accounting for only 2.0%, 2.1%, 0.5%, and 2.2%, respec-
tively. The poor performance for these classes had a 
negative impact on the macro average F1-score, which is 

below the micro average for all the models. In opposition, 
in the best-performing sub-subclasses (F1-score > 70.00), 
namely EPI: Case report, EPI: Modelling study, EPI: 
Review, BASIC: Animal experiment, BASIC: Sequenc-
ing and Phylogenetics, and OTHER: Comment, editorial, 
…, non-original, all accounted for 3.8%, 12.7%, 11.4%, 
0.7%, 3.8%, and 27.6% of the dataset, respectively. Those 
6 sub-subclasses (30% of the sub-subclasses) account 
for about 60% of the collection yet with a high variance 

Table 5 F1‑score performance for both the models and ensemble across all the sub‑subclasses

a Statistically significant improvement

Label F1-score (%)

RoBERTa base RoBERTa large BioBERT PubMedBERT COVID-Twitter Ensemble

EPI: Case report 83.91 84.70 86.55 84.65 81.97 86.85

EPI: Case series 62.76 62.30 65.12 63.42 58.60 65.37

EPI: Case–control study 31.79 40.98 35.51 36.80 32.65 39.02

EPI: Cohort study 51.26 53.18 52.85 56.33 48.68 54.10

EPI: Cross‑sectional study 59.89 65.46 66.19 64.10 62.01 65.46

EPI: Diagnostic study 67.01 66.32 65.81 63.83 64.77 69.61

EPI: Ecological study 41.27 41.51 46.53 46.81 42.33 46.46

EPI: Guidelines 57.28 60.32 59.01 60.65 56.26 62.52

EPI: Modelling study 87.61 86.51 87.78 87.05 88.15 88.43a

EPI: Other 21.34 19.33 17.82 17.54 17.61 21.33

EPI: Outbreak or surveillance report 32.81 30.71 30.30 32.28 33.99 38.30

EPI: Qualitative study 20.41 31.75 35.29 40.00 33.33 36.73

EPI: Review 66.44 65.94 67.59 66.22 63.77 70.78a

EPI: Trial 56.76 60.76 73.68 68.35 55.70 71.60

BASIC: Animal experiment 65.12 71.91 57.53 57.89 57.78 72.29

BASIC: Basic research review 19.92 24.60 16.67 13.10 18.64 23.15

BASIC: Biochemical/protein structure studies 60.72 63.48 62.39 64.03 58.13 65.67

BASIC: In vitro experiment 36.36 48.75 41.61 44.05 42.77 46.36

BASIC: Sequencing and phylogenetics 68.68 66.94 72.06 69.64 67.33 70.08

BASIC: Within‑host modelling 0.00 11.76 0.00 10.53 13.64 11.11

OTHER: Other 17.39 16.95 20.56 20.11 15.25 19.32

OTHER: Comment, editorial, …, non‑original 78.28 79.22 79.54 80.79 76.83 82.03a

micro avg 65.85 66.89 67.38 67.40 64.69 69.50a

macro avg 49.41 52.43 51.84 52.19 49.55 54.84a

Table 6 AUC‑ROC performance and a 95% CI for the different 
classification levels for the best standalone and the ensemble 
models

a Statistically significant improvement

Level AUC-ROC

BioBERT Ensemble

Class 91.77 (CI: 90.95, 92.50) 94.33 (CI: 93.70, 94.88)a

Subclass 91.35 (CI: 90.66, 92.01) 94.25 (CI: 93.72, 94.76)a

Sub‑subclass 92.06 (CI: 91.56, 92.54) 94.77 (CI: 94.38, 95.12)a
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in their distribution. These results suggest that the num-
ber of training examples alone is not enough to explain 
the model performance, and that textual features in the 
title + abstract + source fields and/or category definition 
make some classes easier to be learned.

Analyses of the ensemble model
In Fig. 3, we analyzed major aspects of the ensemble out-
comes. In Fig.  3A, the ensemble precision/recall curve 
is plotted against the curves for the RoBERTa base and 
large models for the ORIGINAL class. As we can notice, 
the ensemble curve is consistently above both RoBERTa 
models, which shows the robustness of using a prob-
ability sum strategy for assembling models. The preci-
sion/recall curve obtained by the ensemble model for 
the 22 sub-subclasses is presented in Fig.  3B. The same 
under-performing sub-subclasses as previously spotted 
in the strict classification results can be distinguished, 

in particular EPI: Other, BASIC: Basic research review, 
BASIC: Within-host modelling, and OTHER: Other (as 
in Table 3). This demonstrates that the low performance 
obtained for these categories is not a result of the classifi-
cation threshold tuning. Despite their poor performance, 
they are well above a random classifier baseline, which 
would have a theoretical constant precision of about 0.05 
(1/22 sub-subclasses).

Figure  4  shows the confusion matrix for the different 
classification levels obtained by the ensemble model. 
As we can see from Fig.  4A and B, the ensemble tends 
to predict EPI subclass when misclassifying a document. 
When switching from Fig. 4A to B, the EPI confusion is 
split from the BASIC class into both BASIC and OTHER. 
For the sub-subclass level (Fig. 4C), the EPI: Review class 
[13] was consistently confused with the BASIC: Basic 
research review [20]. This confusion is expected consider-
ing that both sub-subclasses refer to review documents. 

Fig. 3 A Precision/recall curves of the ORIGINAL class for the RoBERTa base/large and the ensemble. B Precision/recall curves obtained by the 
ensemble model for the sub‑subclasses. Well‑represented sub‑subclasses usually perform better than underrepresented ones
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Moreover, the ensemble tends to get confused for some 
of the EPI: … study sub-subclasses, predicting often 
Cohort [4] instead of Case–control [3], Cross-sectional 
[5] instead of Qualitative [12], Modelling [9] instead of 
Ecological [7], and others. There is also a clear confu-
sion cluster when the ensemble predicts Biochemical/
protein structure studies [17] and Sequencing and phy-
logenetics [18], as these documents are often confused 
with some of the BASIC sub-subclasses (in particular 
from 15 to 19). These observations reinforce our previ-
ous hypothesis that sub-subclasses were often misclassi-
fied inside the same subclass. It becomes more evident if 
we focus on the sub-subclass confusion matrix by square 
segments as highlighted in Fig.  4C (horizontal and ver-
tical gray lines): from index 1 to 14 → EPI, from index 
15 to 20 → BASIC, and for index 21 and 22 → OTHER. 
All shady squares inside this perimeter (the majority) are 
intra-subclass misclassifications, while the ones outside 
are inter-subclass misclassifications. Lastly, a vertical line 
of confusion can also be observed for the OTHER: Com-
ment, editorial, …, non-original sub-subclass predictions, 
which the ensemble tends to predict for a wide variety of 
documents (more precisely 8, 10–13, 20–21). The broad 
definition of this category is likely the reason for its con-
fusion with so many other sub-subclasses.

Ranking analysis
Table  7 shows the ranking performance for the stan-
dalone models and the ensemble. BioBERT performed 
better than all the other standalone models for the rank-
ing metrics, whereas it tended to be PubMedBERT in the 

strict classification perspective. However, in both per-
spectives, the ensemble achieves the highest performance 
across all models. In fact, the ensemble returns the right 
sub-subclass in the top-1 position in 71% of cases, with 
precision@3 of 30% (theoretical maximum of 33%) and 
a recall@3 of 89%. This means that in almost 9 out 10 
document classifications, the ensemble returned the cor-
rect sub-subclass in the top 3. Moreover, the ensemble 
got MAP@3 of 79%, representing more than 2.5 points 
improvement with respect to the best standalone model 
(BioBERT).

k-vote analysis
In Fig.  5, we show the strict classification performance 
for the ORIGINAL class using the ensemble for differ-
ent voting thresholds. The threshold for the number of 
votes (t) corresponds to the minimal number of votes for 

Fig. 4 Confusion matrix for class (A), subclass (B), and sub‑subclass (C). The ensemble has a higher probability of confusing sub‑subclasses inside 
their nested subclasses and classes which is why performances tend to be higher at those higher levels

Table 7 Metrics per label using the top‑k retrieved categories

P precision, R recall, MAP mean average precision. As this is a single-label task, 
the max value for P@3 is 1/3 (33%)

Model {P,R,MAP}@1 
(%)

P@3 (%) R@3 (%) MAP@3 (%)

RoBERTabase 65.99 27.10 81.29 72.69

RoBERTalarge 67.29 28.12 84.37 74.86

BioBERT 68.55 28.63 85.89 76.16

PubMedBERT 68.33 28.47 85.42 75.92

COVID‑Twitter‑
BERT

64.98 27.88 83.64 73.14

Ensemble 70.57 29.69 89.07 78.92
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a category required for the ensemble to trigger a classifi-
cation decision. Differently, the probability threshold per 
vote (tv) refers to the probability threshold a single model 
needs to reach to vote for a given category. When such 
a probability threshold is not met, the model would not 
be allowed to vote. Such voting strategies make unknown 
predictions possible, reducing the size of the classifica-
tion set. In addition to static voting thresholds [3–5], a 
dynamic threshold, for majority and unanimity, is intro-
duced where the total of votes can change depending on 
unknown predictions for a given classifier. This means 
that if 2 classifiers (out of 5) were to predict unknown 
for a publication, the dynamic majority and unanimity 
thresholds would be set at 2 and 3, respectively.

The behavior of the ORIGINAL class prediction in 
terms of F1-score is presented in Fig. 5A. As it is a binary 
problem, setting a dynamic majority and a static one 
(t = 3) while tv = 0.5 produced the same results, a full 

size dot placed around 92%. This phenomenon is pos-
sible because there will always be a predicted class that 
has more than tv = 0.5; hence, all the models end up vot-
ing. Overall, there is an average of about 93% F1-score on 
most of the dataset across all the tv when using majority 
voting rules and 97% F1-score on a subset of about 80% of 
the dataset when using the static unanimity voting rule. 
In other words, for the ORIGINAL class, confident results 
can be obtained (about 4 points F1-score growth) on a 
subset of the collection (representing about 80% of the 
collection) when switching from a majority to static una-
nimity voting rule. The respective performance in terms 
of precision and recall metrics is shown in Fig. 5B and C. 
We can notice that recall is consistently higher than pre-
cision, which means that this ensemble strategy is better 
at retrieving ORIGINAL articles than refining the selec-
tion. The observed trend is similar to the F1-score perfor-
mance, where we trade a 100% dataset classification and 

Fig. 5 F1‑score (A)/precision (B)/recall (C) for the ORIGINAL class with respect to a probability threshold per vote when using the voting strategy 
across the predictions on the class level. Using different thresholds improves considerably performance while reducing the number of predicted 
publications
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a precision of about 91.5%, for a precision of about 96% 
on about 80% of the dataset with a fixed tv = 0.5 when 
switching from a majority to a static unanimity voting 
rule. A recall of about 99% and a F1-score of about 98.5% 
are achieved on 50% of the subset when setting tv = 0.99 
and t = 5, enabling the classification of half of the publica-
tions with almost no mistakes.

Model interpretation
Figures 6A to C show the top 20 positive impact words 
for EPI, BASIC, and OTHER subclasses. When taking a 
close look at some lexical fields, in the EPI subclass for 
instance, documents containing “modeling,” “mathemati-
cal,” “modelling,” “simulation,” “simulated,” and “equation” 
are all related to the EPI: Modelling study sub-subclass. 

Fig. 6 A, B, and C Top 20 positive impact words for either EPI (A), BASIC (B), or OTHER (C) subclasses when taking the integrated gradient on a 
never‑seen set of about 600 documents. D, E, and F Classification examples with a focus on passages with impact word scores
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Indeed, in the 38 documents subset containing at least 
one of those words, 37 were classified by the model as 
EPI: Modelling study. In BASIC, the same applies for “seq” 
and “sequence” lexicons, where 27 publications out of 28 
were classified by the model as either BASIC: Sequencing 
and phylogenetics or BASIC: Biochemical/protein struc-
ture studies. In other words, the model clearly seems to 
retain high importance words at the sub-subclass level, 
which makes sense as it is the level the model was fine-
tuned on. As for OTHER, it seems the classifier attributes 
a lot of credit to the word “viewpoint” for any OTHER: 
Comment, editorial, …, non-original publications, with 7 
out of 7 publications containing the word classified as so.

Figures  6D  to F depict three publications highlighted 
using their integrated gradient scores. Publication in 
Fig.  6D1 was chosen because it illustrates the usage of 
the top BASIC impact words, whereas publications in 
Fig.  6E2 and F3 were selected because they emphasize 
the highest EPI impact words while giving an example 
of a negative impact word. In Fig. 6D, the model predicts 
the BASIC label with 98% probability, and the impact 
words seem to focus on the “sequence analysis” part, 
with “sequence” being the top impact word in average for 
that subclass. A look at the sub-subclass prediction level 
gives a probability of about 95% for the BASIC: Sequenc-
ing and phylogenetics sub-subclass. In Fig. 6E, there is an 
example of a “sectional” occurrence, the reported most 
important word for the subclass EPI. In our set, the word 
appears in 7 documents, each time along with the words 
“cross” and “study.” This publication is classified in EPI: 
Cross-sectional study sub-subclass with a probability of 
96%. Interestingly, all 7 documents were classified as EPI: 
Cross-sectional study except for the publication of Fig. 6F 
which was classified as EPI: Cohort study with 74% prob-
ability, and, for which, the classifier seems to give more 
importance to the word “retrospective” in the methods 
section than to “sectional” in the design section. As both 
sub-subclasses are nested into the same subclass, the 
publication is still classified in the EPI subclass with a 
high probability of 98%.

Discussion
In this article, we introduce an efficient methodology to 
assist epidemiologists and biomedical curators to screen 
articles for inclusion in living systematic reviews by pro-
viding a COVID-19 literature triage solution based on 
deep learning methods. Supported by an existing manu-
ally classified collection, we proposed a classification 

method that automatically assigns categories from a liv-
ing evidence knowledge base to scientific documents 
using BERT-like language models, based on which we 
proposed two methods to combine individual model pre-
dictions (probability sum and voting). The results dem-
onstrate that the ensemble performs consistently better 
than any standalone model, statistically improving upon 
the best standalone baseline on both strict classification 
and ranking tasks.

Error analyses for the living evidence dataset used 
in our experiments showed that classification confu-
sion often happens at the intracategory level. It helped 
to explain the difference of performance observed when 
zooming from sub-subclass to class level, for which 
micro F1-score goes from almost 70% to almost 90%, 
respectively. We believe that in this case, there are impor-
tant patterns within categories that the machine learning 
models can identify and exploit to provide the correct 
predictions at the class and subclass levels. On the other 
hand, at the sub-subclass level, we expect that the docu-
ments could be often related to more than one category, 
that is, they are mostly within one category but may also 
contain information associated with another category, 
which could lead to the confusion of the classifier when 
assigning the sub-subclass, a phenomenon which also 
occurs during the human annotation. Hence, we believe 
that a multi-label assignment strategy at the sub-subclass 
level could be an interesting alternative in the original 
annotation protocol.

Given the strong performance of the proposed classi-
fier, it could be used to support annotation of scientific 
articles and help to speed up, augment, and scale up epi-
demiological reviews and biomedical curation. When 
looking at the problem from a ranking perspective, in 
which the system suggests a list of sub-subclasses for a 
given article, the ensemble returned the right category in 
its top 3 suggestions for almost 90% of the cases. Such 
a robust performance could help augment the annota-
tion process, for example, by enabling human annotators 
to double the number of screened articles, replacing an 
annotator by a machine annotation in the standard dou-
ble annotation process. In this setting, if the category 
proposed by the human annotator matched one of the 
top 3 categories proposed by the automatic classifier, 
this category would be deemed validated. Otherwise, it 
would be sent to a senior annotator for a final decision 
on the remaining 10% of the cases. Considering that a 
typical inter-annotator agreement in the health and life 
sciences field is around 80% [47], this setup could reduce 
the number of human resources required by at least 
50% while maintaining the high quality of the annota-
tions. Alternatively, when using a voting strategy with a 
confidence threshold, we showed that our method was 

1 https:// www. biorx iv. org/ conte nt/ 10. 1101/ 2020. 04. 07. 02948 8v1. full
2 https:// pubmed. ncbi. nlm. nih. gov/ 32237 161/
3 https:// pubmed. ncbi. nlm. nih. gov/ 32237 161/

https://www.biorxiv.org/content/10.1101/2020.04.07.029488v1.full
https://pubmed.ncbi.nlm.nih.gov/32237161/
https://pubmed.ncbi.nlm.nih.gov/32237161/
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capable of robust and superior performances in a subset 
of the collection on the class level (about 98.5% F1-score 
on 50% of the dataset). This approach could be used for 
example in the triage process, when a large batch of arti-
cles needs to be classified, thus scaling up the classifica-
tion process.

The interpretability analysis showed that the model is 
not a complete black box as it is often the case in deep 
learning applications. Using the integrated gradient 
method helped to understand why the model classi-
fied a publication according to a sub-subclass instead 
of another. These results could be additionally used by 
annotation experts as a tool to highlight documents dur-
ing the curation process. It would also be interesting to 
investigate the results of this analysis at the subclass level, 
which we believe could lead to a lexicon defining each 
subclass. Such approaches could then be combined to get 
multiple views by category level, which could be further 
assembled to get better publication insights and perhaps 
better screening results. We leave this investigation for 
future works.

A main limitation of the study is that it uses a dataset 
of only one living evidence knowledge base to train and 
evaluate the models. Thus, it is unclear how the proposed 
methodology will generalize to corpora and categories 
used in other reviews and living evidence knowledge 
bases. That said, given the strong performance obtained 
in other corpus types by a similar methodology [34], we 
believe that it shall generalize well. Second, in our experi-
ments, we fail to explore the full contents of the articles. 
This is due to the unavailability of the full text for a large 
portion of the collection due to either paywall or restric-
tion by publishers to process full text by NLP pipelines. 
Additionally, as the time complexity of the models used 
are quadratic with the number of words, the computation 
time becomes prohibitive as we move from abstract to 
full-text content. Nevertheless, we believe that valuable 
information supporting the classification can sometimes 
only be found in the full text of the manuscripts. An 
extended version of the approach could investigate such 
corpora.

Conclusions
In this work, we described an effective methodology 
to perform automatic classification of COVID-19-re-
lated literature to support creation of systematic liv-
ing reviews and living evidence knowledge bases. The 
proposed ensemble model provided strong (semi-)
automatic classification performance, significantly out-
performing standalone methods, and enabled the cat-
egorization of a subset of the collection with improved 
accuracy. Hence, this approach could serve as an 

alternative assistant to professionals dealing with the 
COVID-19 pandemic literature outbreak. Ultimately, 
our method provides a performant and generic pro-
cedure, enabling efficient annotation of important 
volumes of scientific literature, which could be lever-
aged to assist experts in different literature classifica-
tion tasks and extended to different types of review 
methodologies.
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