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Abstract 

Background:  Cluster randomized trials (CRTs) are becoming an increasingly important design. However, authors 
of CRTs do not always adhere to requirements to explicitly identify the design as cluster randomized in titles and 
abstracts, making retrieval from bibliographic databases difficult. Machine learning algorithms may improve their 
identification and retrieval. Therefore, we aimed to develop machine learning algorithms that accurately determine 
whether a bibliographic citation is a CRT report.

Methods:  We trained, internally validated, and externally validated two convolutional neural networks and one 
support vector machine (SVM) algorithm to predict whether a citation is a CRT report or not. We exclusively used 
the information in an article citation, including the title, abstract, keywords, and subject headings. The algorithms’ 
output was a probability from 0 to 1. We assessed algorithm performance using the area under the receiver operating 
characteristic (AUC) curves. Each algorithm’s performance was evaluated individually and together as an ensemble. 
We randomly selected 5000 from 87,633 citations to train and internally validate our algorithms. Of the 5000 selected 
citations, 589 (12%) were confirmed CRT reports. We then externally validated our algorithms on an independent set 
of 1916 randomized trial citations, with 665 (35%) confirmed CRT reports.

Results:  In internal validation, the ensemble algorithm discriminated best for identifying CRT reports with an AUC 
of 98.6% (95% confidence interval: 97.8%, 99.4%), sensitivity of 97.7% (94.3%, 100%), and specificity of 85.0% (81.8%, 
88.1%). In external validation, the ensemble algorithm had an AUC of 97.8% (97.0%, 98.5%), sensitivity of 97.6% (96.4%, 
98.6%), and specificity of 78.2% (75.9%, 80.4%)). All three individual algorithms performed well, but less so than the 
ensemble.

Conclusions:  We successfully developed high-performance algorithms that identified whether a citation was a CRT 
report with high sensitivity and moderately high specificity. We provide open-source software to facilitate the use of 
our algorithms in practice.
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Introduction
Randomized controlled trials (RCTs) provide a robust 
study design to evaluate health interventions. Compared 
to individually randomized trials, which randomize indi-
viduals, cluster randomized trials (CRTs) allocate groups 
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of people, such as medical practices, hospitals, nursing 
homes, schools, or even entire communities [1–6]. Clus-
ter randomized trials are often used to test interventions 
in education, social welfare, and public health.

We and other methodologists increasingly search 
MEDLINE, EMBASE, and other bibliographic databases 
for CRT reports [7–10]. Unfortunately, the authors of 
CRT reports do not always adhere to the Consolidated 
Standards of Reporting Trial (CONSORT) Statement 
Extension for Cluster Randomized Trial requirements to 
explicitly identify the design as “cluster randomized” in 
the title or abstract of the report [11, 12]. In a review of 
162 trials, about half of CRT reports clearly documented 
the study design in titles or abstracts, about one-quarter 
can be identified based on the reported units of rand-
omization but are not amenable to electronic searching, 
and the remaining quarter cannot be identified except 
through manual inspection of the full-text article [11, 
12]. As such, it is challenging to retrieve reports of CRTs 
from bibliographic databases. As of June 2020, we esti-
mated that less than 0.1% of the 17.5 million citations in 
PubMed over the prior two decades were CRT reports; 
finding reports of CRTs in bibliographic databases are a 
problem akin to screening for rare diseases in the general 
population [13].

A common practice for identifying CRT reports may 
involve using an established database search filter [12]. 
Search filters contain combinations of text strings and 
database tags developed by information specialists. An 
existing search filter captures over 90% of CRT-related 
articles [12]. However, this filter also captures many 
articles that are not CRT reports, and CRT reports rep-
resent only 10 to 15% of articles identified by the search 
filter [12]. Thus, a reviewer needs to screen seven to ten 
records to identify one CRT report. This process is time-
consuming, with a chance of human error.

Machine learning and text mining techniques can 
extract useful information from an article’s citation (e.g., 
title and abstract) and have proved successful in classify-
ing whether an article’s citation is an RCT [14–16]. In this 
study, we developed and internally and externally vali-
dated machine learning algorithms to accurately deter-
mine whether an article citation is a CRT report so it 
can be retrieved when searching bibliographic databases. 
Our machine learning classifier will aid methodologists 
and systematic reviewers in identifying CRT reports in a 
fraction of the time compared to the usual screening of 
all articles.

Methods
This section is organized into five subsections. First, we 
describe the data sets used to train, internally validate, 
and externally validate the machine learning algorithms. 

Second, we describe the machine learning algorithms. 
Third, we explain how we processed the data, trained our 
algorithms, and optimized each algorithm’s hyperparam-
eters. Fourth, we describe how we combined our models 
(an ensemble method) to boost the algorithm’s predic-
tive performance compared to a single model. Finally, 
we describe the evaluation metrics used to test our algo-
rithms’ overall performance.

Datasets
Training and internal validation
To identify article citations for our training and inter-
nal validation sets, we used a previously published CRT 
search filter in MEDLINE and EMBASE that yielded 
87,633 citations published between January 1, 2000, and 
December 31, 2019 (see Additional file  1 for additional 
details about the search) [12]. We randomly selected 
5000 citations from these records for training and inter-
nal validation. AAA and MDA independently classified 
whether each citation was a CRT report, and they had 
over 97% agreement in their classification; discrepancies 
were resolved through discussion. Inclusion criteria were 
primary or secondary reports of CRTs, CRT protocols, 
or pilot and feasibility of CRTs. Citations meeting those 
eligibility criteria were included regardless of the setting, 
clinical area, or cluster type. Exclusion criteria were trials 
reporting only baseline findings, quasi-randomized trials, 
studies reporting process evaluation or method papers, 
individually randomized trials, observational studies, 
editorials, and mechanistic studies. The reviewers based 
their assessment primarily on the title and abstract, but 
the article’s full text was reviewed when the unit of rand-
omization was unclear. We expected that 10 to 15% of the 
5000 articles would be CRT reports [12].

External validation dataset
We evaluated our algorithms’ performance against an 
external dataset that included 1988 articles. These arti-
cles were confirmed primary reports of RCTs, of which 
688 were CRT reports and the rest were individually 
randomized trials. This dataset has been described else-
where [17]. Briefly, the authors identified pragmatic clini-
cal trials using a sensitivity-maximizing pragmatic search 
filter; this search filter is independent of this study’s CRT 
search filter [18]. The search filter for the external dataset 
was applied in MEDLINE on April 3, 2019, for the period 
between January 1, 2014, and April 3, 2019.

From the 1988 articles, we removed 72 articles that 
were captured in the training or validation datasets. We 
applied this exclusion criterion to avoid data leakage that 
would artificially inflate the models’ performance. See 
Additional file 2 for additional details about the external 
dataset.
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Machine learning algorithms
Convolutional neural networks
Although convolutional neural networks were initially 
developed and used for image classification, they have 
been used extensively for text classification [19–22]. 
These models use low-dimensional (typically 50 to 300) 
continuous vectors to represent words (word embed-
dings). The convolutional neural network algorithm takes 
an input text document and assigns weights and biases 
to different neurons based on extracted features during 
the learning process. Next, the algorithm passes linear 
filters represented with corresponding weight vectors 
over word embeddings. The filters start at the beginning 
and move sequentially through the document. As such, 
each filter produces a vector that is proportional in size 
to the document length. Filter outputs are then combined 
by extracting the maximum value on each filter output 
vector (i.e., max-pooling). Finally, the algorithm concat-
enates these scalar values to form a vector representation 
of the entire document that becomes the input for the 
classification prediction layer (Additional file  3: Fig S1). 
A detailed description of CNNs used for natural language 
processing is provided by Wang (2019) [23].

Support vector machines
Support vector machines identify the best hyperplane 
separating classes (e.g., CRT vs. non-CRT report) in high-
dimensional space [24]. This method uses kernel func-
tions (i.e., a similarity function between a pair of records) 
that can be a linear, polynomial, sigmoid, or radial basis 
function. These kernel functions transform the data into 
the form necessary for prediction. We trained the mod-
els using the abovementioned kernel functions and found 
the radial basis function performed best (see the “Hyper-
parameter optimization” section). Additional file  4: Fig. 
S2 provide more details on the two parameters associated 
with the radial basis function: gamma (kernel coefficient) 
and c (regularization parameter).

Data preprocessing, model features, and hyperparameter 
choices
Data preprocessing
We concatenated each citation’s title, abstract, keywords, 
and subject headings. Next, we conducted several data 
cleaning steps for each record, including putting text in 
lowercase, removing brackets/parentheses, punctua-
tions, numbers, and words containing numbers. When a 
citation had a structured abstract, we removed the dis-
cussion and conclusion because these sections rarely 
contained relevant information about the study design. 
We then tokenized titles, abstracts, keywords, and 

subject headings. Finally, we removed stopwords such as 
“and,” “the,” “we,” and “was” (i.e., common words with low 
informational content).

Word embeddings
For the convolutional neural network models, we used 
word embeddings as feature parameters. A word embed-
ding is a learned representation for text, where words 
that have a similar meaning (i.e., used in a similar con-
text) will have a similar representation in vector space 
(e.g., “mother,” “father,” “parent,” “guardian” would have 
similar vector representation). An unsupervised neural 
network maps each word to one vector. We trained two 
word-embedding models: Word2Vec and FastText, with 
the skip-gram architecture and ten iterations (Additional 
file 5) [25, 26]. We trained the word embedding models 
using the 87,633 articles retrieved by our search strategy.

Term frequency‑inverse document frequency
We used the term frequency-inverse document fre-
quency (TF-IDF) method to weigh the relative impor-
tance of unique words in our dataset for support vector 
machines [24, 27]. The TF-IDF weights increase propor-
tionally to the number of times a word appears in a docu-
ment. These weights are offset by the number of records 
containing that word, which helps to adjust for expres-
sions frequently appearing in the dataset (e.g., the term 
“random”). Information retrieval, text mining, and user 
modeling tasks commonly use the TF-IDF method as a 
weighting factor [28].

Handling class imbalance
There are far fewer CRT than non-CRT reports, which 
poses a problem for standard learning algorithms that 
maximize predictive accuracy. Given this class imbalance 
scenario, we observed high model accuracy by uniformly 
predicting the majority class (i.e., non-CRT reports). We 
handled class imbalance by (1) constructing a dataset 
that included all CRT reports but only a random subsam-
ple of non-CRT reports and (2) by adjusting class weights 
where each CRT training example carried more weight 
than non-CRT reports [29]. Table 1 shows the details of 
the search space and the chosen sampling ratio.

Hyperparameter optimization
It was impossible to conduct a grid search over all 
specified hyperparameters for the convolutional neu-
ral network models. We used the hyperopt python 
library, which implements Bayesian hyperparameter 
optimization, to optimize the algorithm’s hyperparam-
eters and achieve the highest algorithm performance 
[30]. We implemented the Tree of Parzen Estimators 
(TPE) algorithm with 500 iterations [31, 32]. We also 



Page 4 of 10Al‑Jaishi et al. Systematic Reviews          (2022) 11:229 

optimized the class weighting, the sampling ratio, and 
the L1 regularization strength. We examined the effect 
of different numbers and sizes of filters and differing 
dropout rates. Dropout rates influence the propor-
tion of neural network connections randomly dropped 
during training, a strategy used to prevent overfitting 

[33]. Finally, we examined the effect of varying the 
vocabulary size where we retained the N most com-
mon words (e.g., 5000) from the training data. Table 1 
shows the full details of the search space and the cho-
sen hyperparameters.

Table 1  Hyperparameter search space for convolutional neural networks and support vector machines

CRT​ Cluster randomized trial, Ngrams A sequence of n words from a text document, TF-IDF Term frequency-inverse document frequency, CBOW Continuous bag of 
words model, AUROC Area under the receiver operating characteristic curve

Hyperparameter Values checked Chosen value

For all models
  Sampling ratio (non-CRT:CRT) (1411:589), (2411:589), (3411:589), (4411:589) 3411: 589

  Class weights (non-CRT:CRT) (1:1), (1:5), (0.59:3.4), (1:17), (1:20) 0.59: 3.4

  Metric AUROC AUROC

Convolutional neural network—Word2Vec
  Max length of each abstract 100, 150, 200, 250, 300, 350 300

  Batch size (distribution) Uniform distribution (10, 30) 11

  Learning rate (distribution) Uniform distribution (0.0005, 0.005) 0.0047

  Dropout rate (distribution) Uniform distribution (0.1, 0.5) 0.29

  Number of filters (distribution) Uniform distribution (64, 1526) 923

  Kernel size (distribution) Uniform distribution (3, 12) 8

  Number of epochs (distribution) Uniform distribution (3, 20) 7

  Constraint applied to the kernel matrix (distribution) 1, 1.5, 2, 2.5, 3 2

  Optimizer (distribution) Adadelta, Adam Adam

  Embedding Skip-gram; CBOW Skip-gram

  Embedding dimensions 50, 100, 200, 300 100

  Number of embedding iterations 5, 10, 15, 20 10

  Loss Binary cross-entropy Binary cross-entropy

Convolutional neural network—FastText
  Max length of each abstract 100, 150, 200, 250, 300, 350 300

  Batch size (distribution) Uniform distribution (10, 30) 16

  Learning rate (distribution) Uniform distribution (0.0005, 0.005) 0.0026

  Dropout rate (distribution) Uniform distribution (0.1, 0.5) 0.47

  Number of filters (distribution) Uniform distribution (64, 1526) 532

  Kernel size (distribution) Uniform distribution (3, 12) 11

  Number of epochs (distribution) Uniform distribution (3, 20) 14

  Constraint applied to the kernel matrix (distribution) 1, 1.5, 2, 2.5, 3 2

  Optimizer (distribution) Adadelta, Adam Adam

  Embedding Skip-gram; CBOW Skip-gram

  Embedding dimensions 50, 100, 200, 300 100

  Number of embedding iterations 5, 10, 15, 20 10

  Loss Binary cross-entropy Binary cross-entropy

Support vector machines
  Kernel linear, polynomial, sigmoid, or radial basis function Radial basis function

  Kernel coefficient 1, 0.1, 0.01, 0.001, 0.0001 0.001

  Regularization parameter 1, 10, 100, 1000 100

  Ngrams 1, 1 to 2, 1 to 3, 1 to 4 1-gram and bi-gram 
(1 to 2)

  Word Vectorization Bag of Words, TF-IDF TF-IDF
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We performed a grid search over all hyperparameters 
for support vector machines, including sampling ratio, 
class weights, kernel functions, kernel coefficient(s), 
regularization parameter, and word vectorization. We 
also compared the model’s predictive ability when using 
unigrams, bigrams, and trigrams. Table 1 provides the 
search spaces and chosen hyperparameters.

Ensembling
Ensemble learning helps improve results from machine 
learning models by combining two or more models 
to boost predictive performance compared to a single 
model [34]. We evaluated the two convolutional neural 
networks and support vector machine models individu-
ally and as an ensemble of all three algorithms. We esti-
mated the final predicted probability that an article was 
a CRT report by calculating the average probability score 
across the three ensembled algorithms.

Evaluation methods
The algorithms output a probability score from 0 to 1 that 
an article citation was a CRT report. For each algorithm, 
we plotted the area under the receiver operating charac-
teristic curve (AUC) as the true positive rate by the false 
positive rate. The AUC values range between 0 and 1. The 
AUC value provides information about how well an algo-
rithm can distinguish CRT from a non-CRT report; the 
closer the AUC value to 1, the better the algorithm pre-
dicts non-CRT reports as non-CRT and CRT reports as 
CRT. The bootstrap procedure in the pROC package in R 
3.6.1 was used to estimate the AUCs confidence intervals 
[35]. As a secondary measure, we estimated the number 
needed to screen, defined as the average number of algo-
rithm-positive articles manually read to retrieve one CRT 
report. The prevalence of CRT reports in the respective 
search strategy and domain area influences the number 
needed to screen and should be interpreted with caution.

To enable the classification of articles, we chose a 
threshold probability score to decide whether an article is 
a CRT report. An article with a probability score greater 
than the threshold was labeled as a CRT report. Thus, we 
aimed to choose a probability threshold that would lead 
to the final algorithm’s sensitivity score greater than 95% 
for the internal validation dataset without significantly 
harming the specificity.

The final algorithms were chosen using the best-per-
forming hyperparameters trained on the entire training 
and internal validation datasets. We then assessed the 
best-performing algorithms on an external dataset. We 
conducted data processing and analyses using Python 
3.7.7; Additional file 6 describes the python libraries used 
for this project [36–46].

Results
From the 5000 selected articles, 589 were confirmed to 
be CRT reports, and the remaining articles were either 
not CRT reports or were otherwise ineligible. We classi-
fied the design for 850 (17%) of the 5000 articles based 
on the full-text article, while the remaining articles 
were classified based on the title and abstract alone; we 
reviewed the full text when the randomization unit was 
unclear. The 589 CRT citations had 111,492 words, and 
the 4411 non-CRT citations had 816,167 words. Figure 1 
illustrates a scatter plot of terms associated with CRT and 
non-CRT reports. For example, from the interactive ver-
sion of Fig.  1  (https://​mlscr​eener.​s3.​ca-​centr​al-1.​amazo​
naws.​com/​Scatt​er_​plot1.​html), 67% of CRT-related arti-
cles compared to 1.7% of non-CRT articles contained 
the term “cluster” in their title, abstract, keyword, or as a 
subject heading.

Table 2 displays each algorithm’s performance charac-
teristics for the internal and external datasets. We evalu-
ated the three machine learning algorithms separately 
and as an ensemble. The individual algorithms operated 
well. However, the ensemble discriminated best on the 
validation dataset with an AUC of 98.6% (95% confidence 
interval: 97.8%, 99.4%), sensitivity of 97.7% (94.3%, 100%), 
and specificity of 85.0% (81.8%, 88.1%); Fig. 2 shows the 
algorithm’s performance. For the internal validation data-
set, a person would need to screen 6.8 citations, on aver-
age, to identify one CRT report. That number dropped to 
1.9 citations when using the ensemble algorithm.

For the external dataset (665 CRT reports of 1916 
articles), the ensemble algorithm had an AUC of 97.8% 
(97.0%, 98.5%), sensitivity of 97.6% (96.4%, 98.6%), and 
specificity of 78.2% (75.9%, 80.4%) (Additional file 7: Fig. 
S3). The number needed to read dropped from 2.9 to 1.4 
citations after implementing the ensemble algorithm.

Discussion
Bibliographic databases are often searched for CRT 
reports [7–10]. Unfortunately, the best bibliographic 
search filter has poor specificity for capturing CRT 
reports resulting in researchers screening many irrel-
evant articles [12]. To our knowledge, our paper presents 
the first tool that can be used to screen CRT reports. 
Furthermore, we showed that CRT reports could be reli-
ably classified using an ensemble of machine learning 
algorithms. We expect our algorithms’ performance will 
improve overtime because (1) we will continue to fine-
tune our algorithms as our repository of CRT reports 
increase and (2) we expect better reporting of the CRT 
study design as both journals and the CONSORT State-
ment Extension for Cluster Trials mandate (or recom-
mend) that authors publishing CRT reports include the 
study design explicitly in the title and abstract [47].

https://mlscreener.s3.ca-central-1.amazonaws.com/Scatter_plot1.html
https://mlscreener.s3.ca-central-1.amazonaws.com/Scatter_plot1.html
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For systematic reviews of CRT reports, our algorithms 
can lead to a substantial reduction in the number of cita-
tions needed to screen with a low probability that CRT 
reports are excluded (sensitivity greater than 97%.) To 

facilitate the use of our algorithms in practice, we have 
made these algorithms available as an easy-to-use open-
source software called MLScreener (Download Link—
Additional file  8). The user conducts their database 

Fig. 1  Scatter text visualization of words and phrases used in our dataset. Points are colored blue or red based on related terms with cluster 
randomized trials (CRT) or non-CRT citations. The dataset consisted of 589 CRT (111,492 words) and 4411 non-CRT citations (816,167 words). The 
terms associated with each category are under “top CRT” and “top non-CRT” headings. Interactive version of the figure: (interactive Fig. 1  https://​
mlscr​eener.​s3.​ca-​centr​al-1.​amazo​naws.​com/​Scatt​er_​plot1.​html) (Note: The file size for the interactive figure is large and can take several minutes to load 
in a browser)

Table 2  Model metrics for the internal and external validation datasets

a The number needed to read was calculated as one divided by the % of articles that are CRTs

AUC​ Area under the receiver operating characteristic curve, CI Confidence interval

Dataset AUC, %
(95% CI)

True positive rate 
sensitivity, %
(95% CI)

False positive rate 
1-specificity, %
(95% CI)

Number 
needed to 
screen
(95% CI)

Internal validation
This dataset had 600 articles, with ~ 15% being CRTs
Number needed to read: 6.8a

  Convolutional neural network—Word2Vec 98.2 (96.9, 99.5) 96.6 (92.0, 100) 13.9 (10.7, 17.0) 1.8 (1.6, 2.1)

  Convolutional neural network—FastText 98.4 (97.3, 99.5) 89.8 (83.0, 96.6) 3.5 (2.0, 5.1) 1.2 (1.1, 1.3)

  Support vector machines 97.2 (95.7, 98.8) 97.7 (94.3, 100) 19.9 (16.4, 23.2) 2.2 (1.9, 2.6)

  Ensemble 98.6 (97.8, 99.4) 97.7 (94.3, 100) 15.0 (11.9, 18.2) 1.9 (1.7, 2.2)

External validation
This dataset had 1916 articles, with ~ 35% being CRTs
Number needed to read: 2.9a

  Convolutional neural network—Word2Vec 97.9 (97.2, 98.6) 97.0 (95.6, 98.2) 20.8 (18.5, 23.0) 1.4 (1.3, 1.5)

  Convolutional neural network—FastText 97.7 (97.0, 98.4) 91.7 (89.8, 93.8) 4.8 (3.7, 6.0) 1.1 (1.1, 1.1)

  Support vector machines 96.8 (96.0, 97.6) 97.3 (96.1, 98.5) 32.2 (29.7, 34.9) 1.6 (1.6, 1.7)

  Ensemble 97.8 (97.0, 98.5) 97.6 (96.4, 98.6) 21.8 (19.6, 24.1) 1.4 (1.4, 1.5)

https://mlscreener.s3.ca-central-1.amazonaws.com/Scatter_plot1.html
https://mlscreener.s3.ca-central-1.amazonaws.com/Scatter_plot1.html
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search with clinical terms using their desired search 
syntax combined with the existing CRT search filter 
[12]. The user must save the output of retrieved articles 
from their preferred bibliographic database in a comma-
separated values (CSV) file. MLScreener takes the search 
result (in CSV format) as input and generates a probabil-
ity score as well as a binary classification of whether the 
record is a CRT report or not. We have two recommen-
dations when using our MLScreener tool: (1) research-
ers should consider sorting the classified records based 
on probability scores in descending order and make an 
informed decision to stop screening based on a low likeli-
hood of seeing CRT reports in the remaining articles or 
when resources (time or money) have been spent, and (2) 
researchers should randomly screen at least 100 records 

from their list of articles (as an external validation) to 
ensure the MLScreener tool worked well in identifying 
CRT reports in their search domain.

As an illustration of our algorithms’ application, we 
implemented our algorithms on a search strategy that 
identified articles for a systematic review of CRT reports 
to capture ethical and methodological reporting issues in 
the dialysis setting [48]. The search strategy for this review 
identified 882 potentially relevant articles. Our ensemble 
algorithm correctly identified 33 of the 34 CRT-related 
articles that two independent screeners identified in their 
review; see Additional file 9 for more details. As a result, 
the number of records required for screening was reduced 
by more than half (note, this will differ depending on the 
prevalence of CRT reports in the relevant area).

Fig. 2  Receiver operating characteristic curves of (1) convolutional neural network using Word2Vec word embedding, (2) convolutional neural 
network using FastText word embedding, (3) support vector machine (SVM), and (4) ensemble model. A A zoomed-out version and B zoomed to 
accentuate variability in the models’ receiver operating characteristic curves
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We estimate that it would require an average of 2 min 
to screen and assess a single article’s eligibility per 
reviewer for systematic reviews. In our application data-
set (882 records), screening time required approximately 
30  h per reviewer, which would have been reduced to 
15 h per reviewer if we used our algorithms.

Error analyses
We conducted error analyses to understand why our 
models make classification errors. We identified titles/
abstracts with higher error rates and diagnosed these 
errors’ root causes when appropriate. Our models gener-
ally had very high sensitivity and infrequently classified 
CRT reports as non-CRTs. However, when CRT reports 
were incorrectly classified, the title and abstract generally 
had little indication about the CRT study design (Addi-
tional file  10A). As a result, our screeners often had to 
review the full-text article to classify these reports.

In contrast, it was common for our models to incor-
rectly classify a non-CRT as a CRT report (Additional 
file  10B). This incorrect classification often occurred 
when the title or abstract included similar text to CRT 
reports. For example, the word “intervention” near the 
word “community” or “school-based/classes” near the 
word “random.” It is challenging to engineer features for 
such reports without overfitting our models. However, 
we anticipate these errors will decrease as we fine-tune 
our models with more data.

Limitations
First, in the absence of available databases of confirmed 
CRT reports, we created our training and internal vali-
dation datasets from a random sample of 5000 articles 
published between 2000 and 2019. We did not extract 
whether the study used an intention-to-treat approach 
for their primary analysis and did not review the full text 
of all 5000 articles to judge whether they were a report 
of a CRT. Thus, we may have missed some CRT reports. 
However, it is unlikely we missed a significant proportion 
of articles given our algorithms’ high discriminative abil-
ity on the external validation dataset, where the full-text 
articles were reviewed. Second, articles included in our 
external dataset were published between 2014 and 2019. 
Thus, we had no external validation for the period before 
2014. However, we expect the reliability of classifying 
CRT reports to resemble the results reported here. Third, 
we did not explore Bidirectional Encoder Representa-
tions from Transformers (BERT) for this project; BERT 
has been shown to provide state-of-the-art results for 
natural language processing tasks [49, 50]. However, the 
use of transformers may be of interest for future classifi-
cation projects, for example, classifying whether an RCT 

is a pragmatic trial. Finally, we did not conduct any user 
analysis for the proposed MLScreener software. Thus, we 
are unaware of how users will engage and interact with 
our application.
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