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Abstract 

Objectives:  Multivariate meta-analysis allows the joint synthesis of multiple outcomes accounting for their correla-
tion. This enables borrowing of strength (BoS) across outcomes, which may lead to greater efficiency and even differ-
ent conclusions compared to separate univariate meta-analyses. However, multivariate meta-analysis is complex to 
apply, so guidance is needed to flag (in advance of analysis) when the approach is most useful.

Study design and setting:  We use 43 Cochrane intervention reviews to empirically investigate the characteristics of 
meta-analysis datasets that are associated with a larger BoS statistic (from 0 to 100%) when applying a bivariate meta-
analysis of binary outcomes.

Results:  Four characteristics were identified as strongly associated with BoS: the total number of studies, the number 
of studies with the outcome of interest, the percentage of studies missing the outcome of interest, and the largest 
absolute within-study correlation. Using these characteristics, we then develop a model for predicting BoS in a new 
dataset, which is shown to have good performance (an adjusted R2 of 50%). Applied examples are used to illustrate 
the use of the BoS prediction model.

Conclusions:  Cochrane reviewers mainly use univariate meta-analysis methods, but the identified characteristics 
associated with BoS and our subsequent prediction model for BoS help to flag when a multivariate meta-analysis may 
also be beneficial in Cochrane reviews with multiple binary outcomes. Extension to non-Cochrane reviews and other 
outcome types is still required.
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Introduction
Conventional methods for meta-analysis produce a sin-
gle summary result, for example about one particular 
outcome. In particular, in most intervention reviews an 
inverse-variance weighting meta-analysis is typically 
applied to each outcome of interest separately, and so 

each meta-analysis utilises just one intervention effect 
estimate per study. This process can be coined a univari-
ate meta-analysis, with the word ‘univariate’ indicating 
a single summary result is of interest. However, most 
meta-analysis projects aim to produce multiple summary 
results, especially because multiple outcomes are of inter-
est, such as a hypertensive participant’s systolic (SBP) 
and diastolic (DBP) blood pressure, a migraine sufferer’s 
levels of pain and nausea, a cancer participant’s disease-
free and overall survival times, and pregnancy outcomes 
for both the mother and her baby [1]. This potentially 
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motivates a multivariate meta-analysis, to produce mul-
tiple summary results (one for each outcome) jointly 
from the same meta-analysis model [2].

The key advantage of a multivariate meta-analysis of 
multiple outcomes is to account for their correlation 
[3]. At the participant level, multiple health outcomes 
are often correlated with each other, and this leads to 
correlation amongst multiple effect estimates from the 
same study. Such correlation of a pair of effect estimates 
is known as within-study correlation. For example, in 
a randomised trial of anti-hypertensive treatment, the 
estimated treatment effects for SBP and DBP are likely 
to have a positive within-study correlation, caused by a 
positive correlation at the participant level between SBP 
and DBP. When there is between-study heterogeneity 
in effects there may also be between-study correlation, 
which arises when the true effect for each outcome is 
correlated with the true effect for another outcome. For 
example, the true effect of anti-hypertensive treatment 
on SBP usually has a positive between-study correlation 
with the true effect on DBP, caused by changes in study 
and participant characteristics (such as dose and mean 
blood pressure at baseline) which modify the true treat-
ment effects on SBP and DBP in the same direction.

Accounting for outcome correlation in a multivari-
ate meta-analysis allows more studies to contribute 
toward the meta-analysis results for each outcome (i.e. 
a study can be included in the analysis even though it 
has not measured all the outcomes of interest), which 
may improve efficiency and even decrease bias (e.g. due 
to selective outcome reporting [4]) compared to under-
taking a separate univariate meta-analysis for each out-
come. In particular, alongside any direct evidence, the 
multivariate meta-analysis allows the summary result for 
each outcome to depend on correlated results from other 
outcomes. The rationale is that by observing information 
from related outcomes we can learn something about the 
missing outcomes of interest, and thus gain some knowl-
edge that is otherwise lost; a concept known statistically 
as borrowing of strength (BoS) [5, 6]. However, a downside 
of multivariate meta-analysis is that the approach is more 
complex than undertaking separate univariate meta-anal-
yses (one for each outcome), as it requires the meta-ana-
lyst to obtain or derive within-study correlations between 
pairs of treatment effect estimates in the same study [7, 
8]. Furthermore, the amount of borrowing of strength 
is often small. Trikalinos et  al. examined 45 Cochrane 
reviews that contained two or three binary outcomes that 
could be analysed using either univariate or multivari-
ate meta-analysis [9, 10]. They conclude that if the “focus 
is on the summary effects and the confidence intervals 
then the choice between the univariate and multivariate 
meta-analysis has limited practical importance” [9]. Yet, 

isolated examples within the Trikalinos review do exhibit 
important differences between univariate and multivari-
ate meta-analysis, and other examples exist where multi-
variate meta-analysis has an important impact [3, 11–14].

Guidance is therefore needed to help researchers iden-
tify (as part of a prespecified analysis and project plan) 
whether a multivariate meta-analysis may be useful in 
their particular review. To address this, in this article we 
use the set of Cochrane reviews identified by Trikalinos 
et  al. to investigate the characteristics of meta-analysis 
datasets that are associated with larger BoS when apply-
ing a multivariate meta-analysis. We then derive a mul-
tivariable prediction model for predicting the amount of 
BoS conditional on these characteristics, which might be 
useful as part of a prespecified analysis plan to flag when 
to use the multivariate approach in practice. Note that 
we focus on the benefits of multivariate meta-analysis 
for estimating the summary effect for each outcome, and 
do not consider functions of the outcomes (e.g. differ-
ences in summary effect for outcomes 1 and 2), as then 
the benefit of a multivariate meta-analysis to account for 
correlation is more obvious (i.e. to determine the correct 
variance of the function) [15].

Methods
We firstly introduce the Trikalinos dataset to be used 
through the article. Then we describe our methods to 
identify characteristics associated with BoS, and for 
developing a multivariable prediction model for BoS.

Data analysis using 43 reviews of binary outcomes 
identified by Trikalinos
There were 45 reviews included in the empirical review 
by Trikalinos et al. [9, 10]. Each review contained at least 
seven studies that reported both outcomes or at least half 
the studies with both outcomes if the total number of 
studies was greater than 14. Each of the studies satisfying 
the previous requirement (i.e. at least seven studies with 
both outcomes) had at least 10 patients and at least two 
events. There were two reviews that contained three out-
comes, but these were excluded for our purposes since 
we decided to focus on bivariate models. The remaining 
43 reviews were included, and these contained between 
7 and 132 studies with two binary outcomes of interest 
each with a cross classification (two by two) table sum-
marising the number of outcome events and non-events 
for the treatment and control groups. The relationships 
between the pair of binary outcomes was either mutually 
exclusive or an is-subset-of relationship. An is-subset-of 
relationships refers to when one outcome is contained 
within the other. For example, the number of patients 
that have survived with a particular condition at, say, 6 
months and a year. A mutually exclusive relationship is 
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when the outcomes are independent of each other and 
therefore occur separately. An example is death from 
breast cancer and death from other causes, excluding 
breast cancer.

For each of the 43 meta-analysis datasets, we used 
the two-by-two tables for each outcome in each trial to 
derive treatment effect estimates (log odds ratio esti-
mates) and corresponding error variances. A fixed 0.5 
continuity correction was required if any denominator in 
the equation for the variance was equal to zero [16, 17]; 
that is, if a study had a zero cell in the two-by-two table, 
then 0.5 was added to all cells for that study. This is a sim-
ilar approach to the normal approximation analyses in 
the original Trikalinos review [9, 10]. For a pair of treat-
ment effect estimates in the same trial, we also derived 
their within-study correlation using the formula provided 
for an is-subset-of relationship [7, 18], and by Trikalinos 
and Olkin for a mutually exclusive relationship [19]. In 
some studies, the within-study correlation was +1 or 
−1, which can cause issues of singular variance matrices 
during the multivariate model estimation. To avoid this 
issue, we replaced any ±1 values with ±0.99., although 
other approaches are possible [18].

To each of the 43 meta-analysis datasets, a univariate 
common-effect meta-analysis was applied to each out-
come separately, using maximum likelihood (ML) esti-
mation. Then we also fitted a bivariate common-effect 
meta-analysis using ML estimation, to jointly analyse 
both outcomes whilst accounting for any within-study 
correlations. The ordering of outcome 1 or 2 was irrel-
evant (i.e. same results obtained regardless), though for 
the is-subset-of reviews outcome 2 was designated to be 
the subset of outcome 1.

A bivariate meta-analysis can be conducted in many 
statistical packages, for example in Stata and R there is 
the mvmeta package (which, in Stata, also provides an 
option to calculate the BoS), and formula for univariate 
and bivariate meta-analysis models is shown elsewhere 
[2, 3].

Following the bivariate analysis, the BoS was quanti-
fied for each outcome by calculating the BoS statistic pro-
posed by Jackson et al. [6]:

The BoS statistic provides the percentage reduction in 
the variance of a particular summary result that is due to 
(borrowed from) data from other correlated outcomes. 
It is the percentage weight toward the summary result 

BoS = 100%× 1−
variance of summary result from multivariate analysis

variance of summary result from univariate analysis
.

for, say, outcome 1 that is given to the study data for 
other correlated outcomes [6]. For example, in a bivari-
ate meta-analysis, a BoS of 0% for outcome 1 indicates 
that the summary result for outcome 1 depends only on 
data for outcome 1, i.e., that outcome 2 does not add any 
information for estimating outcome 1. As BoS increases, 
outcome 2 provides more and more information toward 
the estimate of outcome 1, reflected by reducing its 
variance.

The distribution of BoS statistic values was summarised 
using descriptive statistics and graphically via histograms 
(see Supplementary material).

The process was repeated but rather using univari-
ate and bivariate random-effects models, which allow for 
between-study heterogeneity. Similar conclusions were 
drawn and so we focus on the results from the common-
effect meta-analyses in this paper. Further, some of the 
bivariate random-effects models suffered from prob-
lems estimating the between-study correlation (often 
‘converged’ at -1 or +1, for reasons explained elsewhere 
[20]), and so we deemed it more reliable to focus on BoS 
observed for the bivariate common-effect model. Results 
from the random-effects models are shown elsewhere 
[21].

Examining characteristics associated with BoS
The following seven meta-analysis level characteristics 
were selected for examination of their association with 
BoS statistic values from a bivariate common-effect 
meta-analysis:

•	 The percentage of studies with missing data for the 
outcome of interest

•	 The percentage of studies with missing data across 
both outcomes

•	 The number of studies in the meta-analysis
•	 The number of studies with only the outcome of 

interest
•	 The number of studies with both outcomes
•	 The average absolute within-study correlation
•	 The largest absolute within-study correlation

These characteristics were identified by the research 
team based on analytic reasoning (see Supplementary 
material), and our previous (applied and methodologi-
cal) experience [3, 12, 15, 22]. The unadjusted effect of 
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each characteristic on the magnitude of BoS was esti-
mated by fitting a linear regression with BoS as the out-
come and the characteristic as the only covariate. Two 
BoS values were available for each of the 43 reviews 
(one for each outcome), and so the dataset had 86 out-
come values in total. A random intercept was used to 
account for clustering of BoS values from the same 
study. We also considered modelling BoS on the log 
scale, but this did not change the findings importantly, 
and therefore we present results on the BoS scale to aid 
interpretation.

Development and internal validation of a prediction model 
for BoS
A multivariable prediction model was developed for pre-
dicting BoS in a new bivariate meta-analysis dataset. The 
7 characteristics previously listed were candidate predic-
tors for inclusion. A summary of the characteristics of the 
43 meta-analyses examined by Trikalinos et al. [9, 10] is 
provided in Table A in supplementary material. As there 
were 86 BoS values for the modelling, this corresponded 
to 12.3 values per candidate predictor. At the time of 
model development, this was considered appropriate as 
it was larger than ten subjects per predictor (often a rule 
of thumb for sample size), larger than a recent proposal 
of two values per predictor [23], and ensured a multi-
plicative margin of error less than 20% for the residual 
standard deviation (i.e. lower and upper bounds of 95% 
confidence for residual variance within 20% of the esti-
mated value) [24, 25].

A multivariable linear regression model containing 
all the seven candidate predictors (forcing them all to 
be included, regardless of statistical significance) was 
fitted. The apparent model performance was quan-
tified by the apparent R2 statistic. Internal validation 
was then undertaken to obtain optimism-adjusted 
estimates of R2 and calibration slope, using bootstrap 
resampling with 1000 bootstrap samples, as described 
elsewhere [26–28]. The optimism-adjusted calibra-
tion slope was then used as a uniform shrinkage factor; 
that is, we multiplied the predictor effects of the fit-
ted model by the optimism-adjusted calibration slope. 
Then, forcing the revised predictor effects to be held 
fixed, we re-estimated the model intercept to ensure 
calibration-in-the-large. This produced our final 
model with all predictors.

In addition to fitting full models, a backwards selection 
procedure was undertaken to identify a simpler model, 
with p values less than 0.1 used to define predictor inclu-
sion. Internal validation and optimism adjustment was 
again applied using bootstrapping, which accounted for 
the variable selection when estimating optimism.

Applications in new data
For illustration of their potential use, we applied the 
developed tools to predict BoS in two Cochrane reviews 
not included in the Trikalinos review, and to three non-
Cochrane reviews, with comparison to subsequent mul-
tivariate meta-analysis results and observed BoS values.

Results
BoS values and comparison of bivariate and univariate 
meta‑analysis results
The 86 BoS statistic values from the 43 meta-analyses in 
the Trikalinos review are shown alongside the univariate 
and bivariate meta-analysis results within Figs. 1 and 2 for 
outcomes 1 and 2, respectively. (see Fig. A in the supple-
mentary material for outcome 1 and outcome 2 ordered 
by meta-analysis ID). A large proportion of the BoS values 
were small; the median (mean) value was 9.0% (13.2%), 
and the inter-quartile range was 2.71% to 20.18%, with 
a minimum value of 0.05% (Fig.  B in the supplementary 
material). However, 22 of the 86 BoS values were over 20%, 
and the largest value was 57.2%, indicating how a bivari-
ate meta-analysis provides notably greater efficiency than 
separate univariate meta-analyses in some applications.

Important differences between bivariate and univari-
ate meta-analysis results arise in some examples, and 
these tend to occur in situations with largest BoS values. 
For example, for outcome 1 in meta-analysis ID 23 (BoS 
= 35.1%), the summary log odds ratio was 0.06 (95% 
CI: −0.37 to 0.49, odds ratio = 1.06) from the univari-
ate meta-analysis and −0.15 (95% CI: −0.50 to 0.19, odds 
ratio = 0.86) from the multivariate meta-analysis; hence 
the direction of the summary effect changed. Similarly, 
for outcome 1 in meta-analysis ID 9 (BoS = 36.3%), the 
summary log odds ratio was 0.65 (95% CI: 0.35 to 0.96) 
from the univariate and 0.32 (95% CI: 0.08 to 0.57) from 
the multivariate meta-analysis; a difference in the magni-
tude of the effect size. For outcome 2 in meta-analysis ID 
26 (BoS = 57.2%), the summary log odds ratio was −1.22 
(95% CI: −1.33 to −1.11) from the univariate meta-anal-
ysis and −0.81 (95% CI: −0.88 to −0.73) from the multi-
variate meta-analysis; hence the confidence interval was 
narrower and the treatment effect less strong after multi-
variate analysis. Also, for outcome 1 in meta-analysis ID 
38 (BoS = 51.4%), the summary log odds ratio was −0.39 
(95% CI: −0.81 to 0.03; p value = 0.068) from the uni-
variate meta-analysis and −0.42 (95% CI: −0.71 to -0.12; 
p value = 0.005) from the multivariate meta-analysis; 
hence the statistical significance changed. Note that our 
focus on change in p values is merely for illustration, as in 
practice basing decisions solely on statistical significance 
is not recommended, and indeed most applications did 
not result in a change of statistical significance).
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Fig. 1  Comparison of the univariate and bivariate meta-analysis results on the log odds ratio scale for outcome 1 from the 43 reviews examined by 
Trikalinos et al., ordered by the magnitude of the BoS statistic
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Fig. 2  Comparison of the univariate and bivariate meta-analysis results on the log odds ratio scale for outcome 2 for the 43 meta-analyses 
examined by Trikalinos et al., ordered by the magnitude of the BoS statistic
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Characteristics associated with BoS
Linear regression analyses looking at each predictor 
individually found strong evidence that all our seven 
pre-specified characteristics were positively associated 
with the magnitude of the BoS statistic value (Table 1). 
In particular, the amount of missing outcome data and 
the magnitude of within-study correlation appeared to 
be important. There was a 0.49% (95% CI: 0.24%, 0.74%) 
increase in BoS for every 1% increase in the percent-
age of studies missing an outcome and a 29.08% (95% 
CI: 16.30%, 41.85%) increase in BoS when the largest 
absolute value of a within-study correlation changed 
from 0 to 1. This is sensible, as the amount of BoS has 
been shown mathematically to depend on the size of 

correlation and the amount of missing data [3, 12, 15, 
29]. Increasing the number of studies was associated 
with a small increase in BoS.

Multivariable prediction model for BoS
Multivariable modelling results are shown in Table 2. After 
fitting a full model including all seven characteristics, 
the apparent proportion of variability explained (R2) was 
0.58. Only four characteristics had strong evidence for an 
important adjusted association with BoS statistic values: 
the total number of studies, the number of studies with the 
outcome of interest, the percentage of studies without the 
outcome of interest, and the largest absolute within-study 
correlation value in the meta-analysis dataset. These all 

Table 1  Unadjusted association of seven meta-analysis characteristics and the magnitude of BoS in a bivariate meta-analysis of two 
binary outcomes

Characteristic Unadjusted effect of characteristics on BoS

Coefficient p value 95% CI

Number of studies 0.19 <0.001 0.09 to 0.29

Number of studies with outcome of interest 0.17 0.013 0.04 to 0.31

Number of studies with both outcomes 0.36 0.001 0.15 to 0.57

Percentage of studies missing either outcome 0.49 <0.001 0.24 to 0.74

Percentage of studies missing the outcome corresponding to the 
BoS value

0.52 <0.001 0.38 to 0.67

Average absolute within-study correlation 28.36 <0.001 14.37 to 42.35

Largest absolute within-study correlation 29.08 <0.001 16.30 to 41.85

Table 2  Adjusted association of seven meta-analysis characteristics and the magnitude of BoS in a bivariate meta-analysis

Characteristic Adjusted effect of 
characteristic on BoS (full 
model)

Adjusted effect of characteristic 
on BoS (after backwards selection)

Final model after applying 
global shrinkage factor of 
0.96

Coefficient (95% CI)
p-value

Coefficient (95% CI)
p-value

Coefficient

Number of studies 0.70 (0.13 to 1.27)
0.017

0.65 (0.19 to 1.12)
0.006

0.630

Number of studies with outcome of interest −0.69 (−1.39 to 0.01)
0.052

−0.79 (−1.38 to −0.19)
0.010

−0.755

Number of studies with both outcomes −0.23 (−1.20 to 0.74)
0.64

Percentage of studies missing either outcome −0.12 (−0.53 to 0.28)
0.55

Percentage of studies missing the outcome 
corresponding to the BoS value

0.35 (0.09 to 0.61)
0.009

0.29 (0.10 to 0.48)
0.003

0.282

Average absolute within-study correlation −9.98 (−33.15 to 13.19)
0.39

Largest absolute within-study correlation 35.23 (12.49 to 57.98)
0.003

26.59 (16.53 to 36.65)
<0.001

25.581

Intercept −13.90 (−23.22 to −4.58)
0.004

−14.05 (−22.85 to −5.26)
0.002

−13.020

Model performance Apparent
R2= 0.58

Apparent
R2= 0.57

Optimism-adjustedR2= 0.50
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had a positive adjusted association with BoS values, except 
for the number of studies providing the outcome of inter-
est which had a negative association. The latter makes 
sense as, after accounting for the total number of studies, a 
larger number of studies with the outcome of interest leads 
to less opportunity for borrowing strength from the corre-
lated outcome. After using backwards selection, only these 
four characteristics were selected (Table 2), and the model 
performance was very similar to the full model (appar-
ent R2 = 0.57). For parsimony, we therefore chose to use 
this reduced model going forward. Bootstrapping identi-
fied a small amount of overfitting in the final model after 
variable selection (optimism-adjusted calibration slope = 
0.96; optimism-adjusted R2 = 0.50). After applying a global 
shrinkage factor of 0.96 to adjust for overfitting, the final 
prediction model was (Table 2):

  A scatter plot of the observed BoS values against the 
predicted BoS values (before and after shrinkage) is 
shown in Fig.  3. The larger the predicted BoS then the 
greater the rationale for undertaking multivariate meta-
analysis. We suggest a threshold of about 15 to 20% for 
flagging that a multivariate meta-analysis is worth con-
sidering. Note that the equation depends on knowing 
the largest within-study correlation. If this is not known, 
we suggest assuming a large value, say 0.8, for the largest 
absolute within-study correlation. This would then reveal 
the predicted BoS in a situation where the two outcomes 
are highly correlated.

Applied examples
We applied Eq. (1) to predict BoS in two Cochrane 
reviews published in 2017 by Buzzetti et  al. [30] and 

(1)Predicted BoS for outcome of interest = −13.02 + (0.630 ∗ number of studies)
− (0.755 ∗ number of studies with outcome of interest)

+
(

0.282 ∗ percentage of missing data for outcome of interest
)

+
(

25.581 ∗ largest absolute within − study correlation
)

Fig. 3  Scatter plot of the observed BoS versus the predicted BoS from the multivariable model after backwards selection (before and after 
shrinkage)
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Feinberg et al. [31], which both contained an is-a-subset-
of relationship between two outcomes. Buzzetti et  al. 
reviewed randomised trials comparing the use of gluco-
corticosteriods for alcoholic hepatitis compared with no 
intervention, and the two correlated outcomes were mor-
tality at maximal follow-up and mortality at 30 days [30]. 
Feinberg et al. reviewed randomised trials that compared 
experimental nutrition support to a control for disease-
related malnutrition in Intensive Care Unit participants, 
including trauma, characterised as “at nutritional risk”; 
their two correlated outcomes of interest were all-cause 
mortality at the end of the intervention and at maximum 
follow-up [31].

The results are shown in Table 3. For the Buzzetti et  al. 
review, using Eq. (1) the predicted BoS is only 10.8% for 
outcome 2, but larger at 20.1% for outcome 1 as calculated 
below.

Predicted BoS for outcome of interest (outcome 1) = −13.02 + (0.630 ∗ number of studies)

− (0.755 ∗ number of studies with outcome of interest)

+ (0.282 ∗ percentage of missing data for outcome of interest)

+ (25.581 ∗ largest absolute within − study correlation)

= −13.02 + (0.630 ∗ 12) ∨̀⃛ (0.755 ∗ 9)

+ (0.282 ∗ 25) + (25.581 ∗ 0.99)

= 20.1%

Given the predicted BoS for outcome 2 is moderately 
large, it flags that a multivariate meta-analysis may be use-
ful in this review, for outcome 2 to borrow strength from 
outcome 1. Subsequently, we applied a multivariate meta-
analysis and the summary odds ratio for outcome 2 was 
0.89 (95% CI: 0.69 to 1.15), which provided much weaker 
evidence of a beneficial treatment effect than the univari-
ate meta-analysis results (summary odds ratio = 0.69, 95% 
CI: 0.48 to 0.98). Indeed, the actual observed BoS was 47.7% 
for outcome 2, and so our predicted BoS of 20.1% was an 
underestimate. Nevertheless, the predicted BoS still flagged 
that a multivariate meta-analysis was potentially important. 
For outcome 1, the observed BoS was 3.2%, and so multi-
variate and univariate meta-analysis results were similar, as 
anticipated by the lower predicted BoS value of 10.8%.

In the Feinberg et  al. review, for outcome 1 the pre-
dicted BoS was 21%, again flagging that a multivariate 
approach may be worth the extra effort for outcome 1 in 

Table 3  True and predicted BoS values for two Cochrane reviews, alongside their multivariate and univariate meta-analysis results

Review (total 
number of 
studies)

Outcome Number of 
studies with 
the outcome

Predicted 
BoS from Eq. 
(1)

Observed 
BoS after 
bivariate 
meta-analysis

Bivariate common-effect 
meta-analysis

Univariate common-effect 
meta-analysis for each 
outcome separately

Summary 
odds ratio 
(95% CI)

Standard 
error of log 
odds ratio

Summary 
odds ratio 
(95% CI)

Standard error 
of log odds 
ratio

Buzzetti et al. 
[30] (12)

1: Mortality at 
30 days

9 20.1% 47.7% 0.89 (0.69 to 
1.15)

0.13 0.69 (0.48 to 
0.98)

0.18

2: Mortality 
at maximal 
follow-up

12 10.8% 3.2% 0.89 (0.69 to 
1.14)

0.13 0.91 (0.70 to 
1.17)

0.13

Feinberg et al. 
[31] (15)

1: All-cause 
mortality at 
end of inter-
vention

11 21.0% 32.8% 0.97 (0.81 to 
1.16)

0.09 0.97 (0.78 to 
1.20)

0.11

2: All-cause 
mortality at 
maximum 
follow-up

15 10.4% 0.2% 0.96 (0.82 to 
1.12)

0.08 0.96 (0.82 to 
1.13)

0.08
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this review. When applying the multivariate model, the 
observed BoS was 32.8% for outcome 1, and this led to a 
narrower confidence interval for the summary treatment 
effect compared to univariate meta-analysis for outcome 
1 (Table  3), although no change in statistical or clinical 
significance (unlike the Buzzetti et al. review).

Discussion
Key findings and recommendations
Methods for multivariate meta-analysis of multiple cor-
related outcomes are more complex for non-statisticians 
and may not always be worth the extra effort for review-
ers. However, on occasion, the multivariate approach 
provides important extra efficiency compared to a con-
ventional univariate meta-analysis of each outcome 
separately and may even lead to different statistical or 
clinical conclusions. Our empirical examination using 
the datasets from the Trikalinos review shows that such 
situations occur mainly when the borrowing of strength 
amongst outcomes is large. Hence, it is potentially help-
ful to flag the importance of checking the predicted mag-
nitude of BoS to (non-statistical) researchers as part of a 
pre-specified data analysis plan.

We identified four characteristics as strongly associated 
with BoS in Cochrane intervention reviews with multiple 
binary outcomes: the total number of studies, the number 
of studies with the outcome of interest, the percentage 
of studies missing the outcome of interest, and the larg-
est absolute within-study correlation. Based on these we 
developed prediction Eq. (1), which can help predict BoS 
for outcomes in a new review. In particular, if this equa-
tion predicts BoS to be moderate or large (say greater 
than about 15 to 20%) then it may motivate reviewers 
to obtain additional statistical support to undertake the 
multivariate approach and to invest time and resources 
trying to extract or derive within-study correlations 
amongst outcomes or even to obtain individual partici-
pant data from studies to estimate them directly [32]. It 
should also be noted that, even if BoS is anticipated to 
be low, sometimes there are other reasons why a multi-
variate meta-analysis is needed; for example, if functions 
of summary results are required [9, 10, 12, 15], or if the 
actual estimate(s) of correlation are of interest.

Limitations
There are limitations of our work. Although the devel-
oped prediction equation explained 50% of the variation 
in BoS values, there can still be a reasonable discrep-
ancy between predicted and observed Bos values (see 
Fig. 3 and Table 3). However, the model is not intended 
to perfectly predict BoS and is rather intended as a tool 
to provide additional insight for when the multivariate 
approach is worth considering. This was illustrated in our 

two applied examples, where outcomes with predicted 
BoS values of > 20% suggested multivariate meta-analysis 
may be useful, and subsequently applying multivariate 
meta-analysis improved precision and, in one example, 
even changed the statistical and clinical conclusions.

Another limitation is that the identified predictors of 
BoS and the developed model are based on Cochrane 
reviews of binary outcomes, and so further evaluation and 
extension are needed for other settings, especially contin-
uous outcomes. It is likely that the same predictors will be 
important contributors of BoS to other settings, although 
their specific weight in a prediction model may vary.

Also, our prediction model equation requires the 
researcher to input the largest absolute within-study cor-
relation; this might not be available and in the absence of 
other information we suggest assuming a large value such 
as 0.8, to predict BoS assuming correlations are high, to 
see if BoS is likely to be high even in this situation. How-
ever, it may be that although the within-study correla-
tions are unknown, a more informed guess can be made 
based on past research or understanding the clinical 
outcomes and biology. For example, overall and disease-
free survival are likely highly correlated, as are stroke 
and CVD outcome events, which would justify assum-
ing a large positive correlation. Conversely, benefit and 
harms might be assumed moderately or highly negatively 
correlated. Also, IPD could be obtained from a few stud-
ies, and the within-study correlations were obtained and 
used as input values.

The work presented is based on assuming common 
treatment effects. BoS results were also obtained in our 
examples after using random-effects models to allow for 
heterogeneity, and similar conclusions found (results 
shown elsewhere [21]). However, predicting BoS in 
a random effects setting is more complex, due to the 
impact of between-study variances and between-study 
correlations, which are difficult to gauge in advance, 
although informative prior distributions could be con-
sidered [33, 34]. Furthermore, BoS is harder to define in 
random effects situations, as the univariate meta-analy-
sis must be forced to have the same between-study vari-
ance estimates as the bivariate meta-analysis, to make 
comparisons fair [6, 22]. Hence, we consider it sim-
pler for researchers to focus on predicting BoS initially 
assuming no heterogeneity.

A further limitation is that the BoS statistic is focused 
on identifying changes in precision from univariate to 
multivariate meta-analysis; however, in some cases, 
multivariate meta-analysis may lead to important dif-
ferences in terms of a change in effect size but not a 
change in precision, and so the prediction model may 
not necessarily identify these situations. Thus, choosing 
to conduct a multivariate meta-analysis over a univariate 
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meta-analysis may depend on other considerations even 
when BoS is predicted to be small. This requires further 
research. The feasibility of multivariate meta-analysis 
should also consider whether within-study correlations 
and/or IPD can be collected and whether missing out-
comes are likely to be missing at random [3, 4].

Summary
Though multivariate meta-analysis is a more complex evi-
dence synthesis method, it may sometimes be important 
to consider in reviews of multiple outcomes. We have 
identified key characteristics and developed a prediction 
model to help to flag when a multivariate meta-analysis 
may be beneficial to reviewers with multiple binary out-
comes, as part of a pre-specified analysis plan. Extension 
to other settings, such as non-Cochrane reviews and 
other continuous outcome types, is still required.

What this study adds

•	 Multivariate meta-analysis jointly synthesises mul-
tiple correlated effect estimates from multiple stud-
ies which enables borrowing of strength across out-
comes. This can sometimes lead to difference to 
results from a standard univariate meta-analysis.

•	 An empirical examination of Cochrane intervention 
reviews with multiple binary outcomes shows that mul-
tivariate meta-analysis is most influential when the bor-
rowing of strength (BoS) amongst outcomes is large.

•	 Four characteristics were strongly associated with 
BoS: the total number of studies, the number of stud-
ies with the outcome of interest, the percentage of 
studies missing the outcome of interest, and the larg-
est absolute within-study correlation.

•	 We developed a prediction equation that included 
these characteristics, to help predict BoS for out-
comes in a new review, so to flag when the multivari-
ate approach may be worth considering instead of 
separate univariate analyses.

•	 We suggest that if this equation predicts BoS to be 
moderate or large (say greater than about 15 to 20%) 
then a multivariate meta-analysis approach should be 
considered. However, further evaluation and exten-
sion to non-Cochrane reviews and continuous out-
comes are still needed.
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