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Abstract

Network meta-analysis is increasingly used to allow comparison of multiple treatment alternatives simultaneously,
some of which may not have been compared directly in primary research studies. The majority of network
meta-analyses published to date have incorporated data from randomized controlled trials (RCTs) only; however,
inclusion of non-randomized studies may sometimes be considered. Non-randomized studies can complement
RCTs or address some of their limitations, such as short follow-up time, small sample size, highly selected population,
high cost, and ethical restrictions. In this paper, we discuss the challenges and opportunities of incorporating both
RCTs and non-randomized comparative cohort studies into network meta-analysis for assessing the safety and
effectiveness of medical treatments. Non-randomized studies with inadequate control of biases such as
confounding may threaten the validity of the entire network meta-analysis. Therefore, identification and inclusion of
non-randomized studies must balance their strengths with their limitations. Inclusion of both RCTs and non-randomized
studies in network meta-analysis will likely increase in the future due to the growing need to assess multiple
treatments simultaneously, the availability of higher quality non-randomized data and more valid methods, and
the increased use of progressive licensing and product listing agreements requiring collection of data over the
life cycle of medical products. Inappropriate inclusion of non-randomized studies could perpetuate the biases
that are unknown, unmeasured, or uncontrolled. However, thoughtful integration of randomized and non-
randomized studies may offer opportunities to provide more timely, comprehensive, and generalizable evidence
about the comparative safety and effectiveness of medical treatments.
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Background
Many medical conditions exist for which there are mul-
tiple treatment options. Meta-analysis is a widely used
approach for aggregating results from multiple studies
to provide more robust evidence on the safety and ef-
fectiveness of various treatments [1]. However, evidence
based on pair-wise meta-analysis only considers two
treatments at a time. Accordingly, new meta-analytic
methods have emerged to permit simultaneous compari-
son of multiple treatment options across studies that
compare two or more treatments. These methods are
most commonly referred to as network meta-analysis
(NMA) [2, 3].
Although earlier NMAs only included randomized con-

trolled trials (RCTs) [4], recent NMAs have begun to con-
sider both RCTs and non-randomized studies [5–9]. In
this paper, we describe NMA involving both RCTs and
non-randomized comparative cohort studies—defined as
cohort studies that compare two or more treatment alter-
natives (which may include usual care or no treatment)

using observational data. We discuss some of the promises
and challenges, highlight the potential application of
NMA in multi-center distributed data networks, and offer
insights on opportunities for improving the application of
this methodology.

Introduction to network meta-analysis
A network meta-analysis (sometimes called mixed or mul-
tiple treatments meta-analysis) is a method for comparing
more than two interventions, some of which may not have
been compared directly head-to-head in the same study
(Fig. 1) [2, 3, 9–13]. The key assumption underlying any
NMA is exchangeability of the studies [2, 3, 14]. That is,
all studies measure the same underlying relative treatment
effects, and any observed differences are due to chance.
Stated another way, all treatments included in the NMA
could have been included in the same study, and treat-
ments are genuinely competing interventions [2, 3, 14].
For example, in Fig. 1, AC trials do not have B arms and
AB trials do not have treatment C arms; however, the

Fig. 1 Network meta-analysis and assessment of the exchangeability assumption. Panel a presents a network meta-analysis assessing whether the
exchangeability assumption holds for studies comparing treatments c versus a and treatments b versus a. Panel b presents a table comparing
the patient and study characteristics for these two studies. Panel c assesses and plots the baseline risk of the common comparator (treatment A)
for both studies and the combined result using a box plot. We have compared patient and study characteristics at the pair-wise comparison level
(e.g., a versus b) although they can also be conducted at the treatment level (e.g., a, b, and c)
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assumption underlying a NMA is that if an AB trial would
have included a C arm, it would measure the same under-
lying relative effect for AC as the AC trials included in the
network.
To assess exchangeability, one can collect information

about the studies and carefully consider whether they
appear similar enough to be compared based on inspec-
tion of this information (Fig. 1) [2, 3, 14]. Although this
approach is intuitive, it can sometimes be subjective.
Another way to assess exchangeability is to compare the
event rate in the common treatment arm(s) [2, 3, 14].
Similar event rates may provide some reassurance that
the populations are comparable. However, even if the
rates differ, the exchangeability assumption may still
hold if the populations do not differ in characteristics
that are modifiers of the treatment effect.
Lack of exchangeability in NMA can produce discrep-

ancy in the treatment effect estimated from direct (solid
lines in panel A of Fig. 1) and indirect evidence (dashed
lines in panel a of Fig. 1), sometimes also known as in-
consistency [15]. There are various statistical methods to
evaluate inconsistency when closed loops are available
(i.e., both direct and indirect evidence are available to
allow a comparison), although issues such as low statis-
tical power may limit the applicability of some of these
methods [15].

Rationale and caveats for including non-randomized stud-
ies in NMA
With a sufficiently large sample, well-designed RCTs are
expected to achieve high internal validity by balancing
all measured and unmeasured prognostic factors across
intervention groups through random allocation [11, 16].
However, RCTs are not without their limitations. They
often have short follow-up time, small sample size,
highly selected population, high cost, and ethical con-
straints to study certain treatments or populations.
Well-designed, high-quality non-randomized studies can
complement RCTs or address some of their limitations
(Table 1) [17–20]. These studies may have longer follow-
up time, larger sample size, and more generalizable pop-
ulations who receive various treatments in real-world
settings.
When considering the inclusion of both RCTs and non-

randomized studies in NMA, the quality of evidence under-
pinning a network should be carefully assessed for each
pair-wise comparison in the network. Non-randomized
studies are vulnerable to several biases, including con-
founding which occurs when treatment groups differ in
their underlying risk for the outcome [21–23]. Studies that
do not appropriately account for confounding factors may
therefore produce biased effect estimates (Fig. 2) [24].
Therefore, the inclusion of non-randomized studies in
NMA requires careful consideration of the validity of the

studies. The Grading of Recommendations Assessment,
Development, and Evaluation (GRADE) working group
has developed a framework for assessing the quality of
evidence from non-randomized studies in the context
of NMA [25]. Other guidelines, such as the STrength-
ening the Reporting of OBservational studies in Epi-
demiology (STROBE) guidelines [26] and the guidelines
for good pharmacoepidemiology practices [27], also
offer useful guidance to assess the quality of non-
randomized studies. It is still important to carefully as-
sess potential treatment effect modifiers even in high-
quality non-randomized studies.
Another important issue to consider is whether the

non-randomized studies address the same research
questions or estimate the same treatment effects as the
RCTs. The most commonly used analytic approach in
RCTs is the intention-to-treat approach, which esti-
mates the effect of treatment initiation. Other analyses
that can be done in RCTs or non-randomized studies
include as-treated analysis (which compares the treat-
ments that the patients actually receive), per-protocol
analysis (which includes only patients who adhere to
the trial protocol), and other analyses such as inverse
probability weighting that appropriately account for
time-varying confounding [28]. Depending on analytic
methods used, non-randomized studies that compare
the same treatment alternatives may produce treatment
effects that are valid but different from that estimated
in the RCT [28–31].

Table 1 Advantages and disadvantages of incorporating both
randomized controlled trials and non-randomized comparative
cohort studies in network meta-analysis

Advantages

• Non-randomized studies can complement randomized controlled trials
or address some of their limitations, such as short follow-up time, small
sample size, highly selected population, high cost, and ethical
restrictions.

• Incorporating both types of data allows assessments of multiple
treatments simultaneously, including treatments that may not have
been studied in randomized controlled trials.

• Incorporating both types of data allows larger sample size and more
diverse populations, thereby improving the generalizability of the
findings.

• Incorporating non-randomized studies might improve network density
and connect disconnected networks.

Disadvantages

• Including low-quality, non-randomized comparative cohort studies
could perpetuate the biases that are unknown, unmeasured, or
uncontrolled.

• There is a greater risk of violating the exchangeability assumption of
network meta-analysis, especially if broad populations are considered.

• The analysis may be more complex, time- and resource-intensive, and
less understood than network meta-analysis that only includes
randomized controlled trials.
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Network meta-analysis of RCTs and non-randomized
studies
There are various approaches for combining RCTs and
non-randomized studies in NMA [9, 13, 32, 33]. Naïve
pooling of all randomized and non-randomized study-
level data, using either frequentist or Bayesian NMA

methods, is the simplest approach and does not differen-
tiate between two study designs [13].
Another way to include non-randomized studies in

NMA is to use them as prior information or in the form
of a hierarchical model that allows for bias adjustment
[13]. When incorporating them as prior information,

a

b

c

Fig. 2 Potential bias resulting in network meta-analyses incorporating both randomized controlled trials and non-randomized comparative cohort
studies. a Potential for confounding—randomized versus non-randomized studies. b Indirect estimate from randomized controlled trial. c Indirect
estimate from non-randomized study
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non-randomized studies are analyzed separately and
results are then used as prior information for the RCT
model. The potential biases associated with non-
randomized data can be modeled by adjusting the prior
distribution. To downweigh the non-randomized infor-
mation, the variance parameter can be inflated; to adjust
for overestimation or underestimation of the treatment
effect, the mean of the prior information can be shifted.
Another approach—a Bayesian hierarchical model—is

generally considered the most flexible [9, 13, 32, 33]. A
Bayesian hierarchical model is a statistical model that
estimates the parameters of the posterior distribution
using the Bayesian method [9, 13, 32, 33]. In the model,
a study-design level (e.g., RCT, non-randomized study)
is introduced [9, 13, 32, 33]. This approach allows for
bias adjustments discussed above as well as direct com-
parison of study design-specific estimates to overall es-
timates. For example, evidence from individual studies
of the same design can first be combined to produce
study-design level estimates; the study-design level esti-
mates can then be combined to obtain overall estimates
[9, 13, 32, 33]. It also gives an estimate of consistency
between study designs. There is limited published re-
search in this area, especially the latter two approaches.
Furthermore, there is a lack of consensus on what

degree of bias adjustment to apply to non-randomized
studies.
Figure 3 presents scenarios that may occur when com-

bining RCTs and non-randomized studies in NMA. In
some cases (e.g., drug B versus drug A), findings from
non-randomized studies align with those reported in
RCTs. In other situations (drug D versus drug C), the
findings reported in the non-randomized studies do not
align with those reported in RCTs. Investigators and
decision makers are generally more likely to have confi-
dence in estimates in the scenario where findings from
both study designs are consistent compared with the
scenario where there are discrepancies. However, the
discrepancies may yield insight regarding biases in the
non-randomized studies (e.g., residual confounding), effect
modification by specific patient characteristic, or differ-
ences in various treatment effects (e.g., intention-to-treat
effects and as-treated effects) that may not have been no-
ticed had both study designs not been considered.
Incorporation of both RCTs and non-randomized

studies into NMA typically requires considerably more
time, effort, and costs compared to including only RCTs.
The decision to include non-randomized studies should
carefully consider the expected additional benefits given
the additional time, effort, and costs. Restricting the

Fig. 3 Combining and comparing findings from network meta-analysis using randomized controlled trials and non-randomized comparative cohort
studies. We assume for this example a network which consists of four treatments, namely A, B, C, and D. NMA network meta-analysis, NRS non
randomized studies, RCT randomized controlled trials
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analysis to specific types of non-randomized design or
analysis (i.e., propensity score matching) may some-
times reduce time, effort, and costs to conduct NMA
but may introduce bias due to exclusion of otherwise
eligible studies.

Network meta-analysis of non-randomized studies in
large distributed data networks
Over the past number of years, we have seen an increase
in the development of distributed data networks to assist
in conducting non-randomized studies. In the USA, the
Mini-Sentinel program [34] has developed a distributed
network of 18 data partners with information from over
178 million individuals [35], while the Canadian Net-
work for Observational Drug Effect Studies (CNODES)
[36] includes health and prescription records of over 40
million people from eight jurisdictions in Canada and
abroad. Other examples of distributed networks include
the “Exploring and Understanding Adverse Drug
Reactions by integrative mining of clinical records and
biomedical knowledge” (EU-ADR) project in Europe
[37] and the Asian Pharmacoepidemiology Network
(AsPEN) [38]. These networks permit comparative
safety and effectiveness assessment of medical prod-
ucts across multiple databases without creation of a
central data warehouse [34, 36, 39].
Both pair-wise meta-analysis and NMA are well-

suited for distributed data networks. Traditionally, non-
randomized studies for meta-analysis are identified by
systematic review of published and unpublished studies.
However, these studies often include a broad array of
studies with different study questions, study designs,
analytic methods, and completeness of information.
Combining such heterogeneous information in meta-
analysis can sometimes be problematic and challenging.
On the other hand, the studies performed in distributed
data networks often use common protocols, data models,
or both, which improves the comparability of analysis
performed at each site [34, 36, 39]. Both CNODES and
Mini-Sentinel have used pair-wise meta-analysis to com-
bine data across data sources [36, 40–43]. NMA is well-
suited for incorporating data from these networks when
the study compares multiple treatment options, as in a
Mini-Sentinel assessment of anti-hyperglycemic agents
and acute myocardial infarction [44].
Further, access to data from large distributed data net-

works may allow more detailed assessment and adjust-
ment for heterogeneity and inconsistency. Larger sample
sizes derived from these networks will allow detailed as-
sessment of the benefits and harms of treatments in
sub-populations that may have been understudied in
RCTs. Further, access to patient-level data will facilitate
the conduct of meta-regression analyses to adjust for

differences in characteristics between studies. This may
be particularly important, because even if the estimate
from a non-randomized study is unbiased, the popula-
tion may differ from those studied in RCTs.
Currently, data from most distributed data networks

are only available to those involved in the networks; fu-
ture work is needed investigating the advantages and
disadvantages of making de-identified or summary-level
data from these networks more accessible for analysis by
others.

Discussion and conclusions
The interest in and need for incorporating both RCTs
and non-randomized studies in NMA will likely in-
crease in the future due to the growing need to assess
multiple treatments simultaneously, improvement in
the quality and validity of non-randomized data and
analytic methods, and the global movement towards
progressive licensing [45] and product listing agree-
ments [46] where information on a medical product is
monitored throughout its life cycle for regulatory and
reimbursement purposes. Incorporating both types of
data in NMA may improve precision, allow for a wider
array of treatments to be considered (i.e., expand net-
work or connect otherwise “disconnected network”),
and provide real-world and more generalizable evi-
dence on the risks and benefits of medical treatments.
However, the inclusion of low-quality, non-randomized
studies with inadequate control for biases may threaten
the validity of the NMA findings. More studies are
needed to compare the validity of different approaches
that combine RCTs and non-randomized studies in
NMA. Although the inclusion of both types of data in
NMA poses several methodological challenges, it also
offer promises to provide more timely, comprehensive,
and generalizable evidence on the comparative safety
and effectiveness of medical treatments.
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