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Abstract

100 trials.

Background: Network meta-analysis is becoming increasingly popular for establishing comparative effectiveness
among multiple interventions for the same disease. Network meta-analysis inherits all methodological challenges of
standard pairwise meta-analysis, but with increased complexity due to the multitude of intervention comparisons.
One issue that is now widely recognized in pairwise meta-analysis is the issue of sample size and statistical power.
This issue, however, has so far only received little attention in network meta-analysis. To date, no approaches have
been proposed for evaluating the adequacy of the sample size, and thus power, in a treatment network.

Findings: In this article, we develop easy-to-use flexible methods for estimating the ‘effective sample size’ in
indirect comparison meta-analysis and network meta-analysis. The effective sample size for a particular treatment
comparison can be interpreted as the number of patients in a pairwise meta-analysis that would provide the same
degree and strength of evidence as that which is provided in the indirect comparison or network meta-analysis. We
further develop methods for retrospectively estimating the statistical power for each comparison in a network
meta-analysis. We illustrate the performance of the proposed methods for estimating effective sample size and
statistical power using data from a network meta-analysis on interventions for smoking cessation including over

Conclusion: The proposed methods are easy to use and will be of high value to regulatory agencies and decision
makers who must assess the strength of the evidence supporting comparative effectiveness estimates.

Keywords: Network meta-analysis, Indirect comparison, Sample size, Power, Strength of evidence

Background

Over the past 2 decades, meta-analysis has become in-
creasingly accepted by clinicians, decision-makers and
the public as providing high-quality assessments of evi-
dence [1]. Network meta-analysis, a new expansion of
meta-analysis that allows for simultaneous comparison
of several treatments, is similarly becoming increasingly
accepted in the clinical research community [2-11].
Having been available for more than 3 decades, meta-
analysis has been studied extensively, and several hun-
dred articles published in this period have identified
and resolved a vast array of basic and advanced meth-
odological issues [1,12]. Network meta-analysis inherits
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all the challenges present in a standard meta-analysis
(e.g., issues of bias, heterogeneity and precision), but
with increased complexity due to the multitude of com-
parisons involved [5,13]. Since network meta-analysis is
still a relatively new technique, the number of publica-
tions addressing methodological challenges is still rela-
tively sparse.

One important issue that has received much attention
in individual trials and meta-analysis is the issue of sam-
ple size and statistical power [14-26]. Several studies
have demonstrated the importance of interpreting
pooled meta-analysis estimates and confidence intervals
according to the statistical level of evidence (i.e., preci-
sion) [14,15,18-24,26,27], and sound recommendations
have been provided [16,22,28]. So far, however, only a
small number of studies have addressed the issue of
power and precision in network meta-analysis [8,13,29],
and no comprehensive guidance exists on the topic. Net-
work meta-analyses typically include many more trials
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than standard meta-analyses because of the multitude of
comparisons involved and for this reason may artificially
appear to provide a stronger evidence base. Likewise, the
accompanying graphical representation of a treatment
network can provide a similar compelling but potentially
false impression of a strong evidence base.

Network meta-analysis utilizes evidence from direct
(head-to-head) comparisons (ie., trials directly comparing
treatment A and B) and indirect comparisons (e.g., the com-
bination of trials comparing A with C and trials comparing
B with C) [4,6,30]. The major challenge in interpreting the
power and precision of a network meta-analysis stems from
the fact that there are (typically) varying levels of power and
precision across all comparisons. In addition, the power and
precision of indirect evidence are more complex to assess
than for direct evidence, and thus, without proper guidance,
it will be difficult for most authors to evaluate the precision
gain from use of indirect evidence as well as the strength of
evidence in a treatment network.

In this article, we provide guidance on quantifying the
power and precision in network meta-analysis using simple
sample size considerations. We first describe how to quan-
tify the precision in indirect comparison meta-analysis and
subsequently in network meta-analysis with combinations of
direct and indirect evidence. We then outline the concept of
sample size requirements and power calculations in pairwise
meta-analysis. Finally, we show how to combine these mea-
sures in order to quantify the power and strength of evi-
dence available for all treatment comparisons in a network
meta-analysis. We illustrate the described methods using
data from a recent network meta-analysis on interventions
for smoking cessation [31].

Methods

Basic methodological framework

Indirect comparisons

Indirect effect estimates are obtained with the effect esti-
mates from two comparisons sharing a common com-
parator [32]. For example, when two treatments A and B
have both been compared to some common comparator
C (e.g., placebo) in a number of randomized clinical
trials, an indirect effect estimate of treatment A versus B
can be obtained using the meta-analysis effect estimate
of A versus C and the meta-analysis effect estimate of B
versus C [32]. In particular, the indirect effect estimate
of A versus B (d,p) is calculated as the estimated effect
of A versus C (d4c) minus the estimated effect of B ver-
sus C (dpc). Mathematically, this corresponds to the
equation

dap = dac — dpc.

(Note, when dealing with ratio effect measures, such
as relative risks and odds ratios, all calculations are done
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on the log scale to preserve linearity and approximate
normality). To produce confidence intervals for the in-
direct estimate, we first need to estimate its variance.
The variance of in the indirect estimate of A versus B
(Vap) is simply equal to the sum of the variance of the
effect estimate of A versus C (V4¢) and the variance of
the effect estimate of A versus B (V,p). Mathematically
this corresponds to the equation Vyp=V,c+ Ve It is
therefore clear that the variance of a (direct) meta-
analysis effect estimate based on some number of trials,
say k, will always be smaller than the variance of an in-
direct meta-analysis based on the same number of trials,
k (all trial sample sizes being equal). In other words, dir-
ect estimates come with higher precision and power
(trial count and trial sample sizes being equal). In many
situations, however, using indirect estimates can add
considerable power and precision.

Combining direct and indirect evidence

When both direct and indirect evidence is available, it
may often be advantageous to combine the two statisti-
cally [2,4-7,30,33]. For example, if only two small trials
have investigated two active interventions A and B head
to head, but 20 trials have compared A or B with pla-
cebo, the indirect evidence will be able to add much
power and precision to the comparative estimate of A
and B. The combination of indirect and direct evidence
requires advanced statistical regression techniques (i.e.,
network meta-analysis) that are beyond the scope of this
article [4,6,30]. However, in the context of sample size
and power considerations, it suffices to understand that
indirect evidence, when combined with direct evidence,
increases the power and precision of treatment effect
estimates [4,6,7,9,30,33]. The extent to which is does so
can be evaluated readily by using the methods we de-
scribe below.

Sample size in indirect comparisons

In this section we introduce three methods for gauging
how much statistical precision an indirect estimate pro-
vides when no direct evidence is available. In particular,
we describe how to approximate the amount of informa-
tion required in a direct (head-to-head) meta-analysis to
produce the same precision as that in the available indir-
ect evidence. Simply put, what direct meta-analysis sam-
ple size would provide a similar degree of information?
We dub this the effective sample size of the indirect evi-
dence or, interchangeably, the effective indirect sample
size. We describe three different methods for approxi-
mating the effective indirect sample size. Each of these
methods differs with respect to simplicity and validity
(the simpler one being the least valid), so we outline the
simplicity-validity trade-offs at the end of the section.



Thorlund and Mills Systematic Reviews 2012, 1:41
http://www.systematicreviewsjournal.com/content/1/1/41

Method 1: the effective number of trials
A simple approach to gauging the degree of power and
precision available in indirect evidence is to approximate
how many trials are required in an indirect comparison
to produce a matching degree of power and precision
from a single head-to-head trial. This type of approxima-
tion is possible under the simple assumptions that the
variances (of the mean) are equal for each trial and that
no heterogeneity is present. Glenny et al. showed that
when the number of trials is the same in both of two
comparisons informing the indirect evidence (e.g., two
trials of A vs. C and two trials of B vs. C), it takes four
trials in the indirect evidence to produce the same preci-
sion as one direct head-to-head trial [8]. In indirect
comparisons, however, it is common that one compari-
son will include more trials than the other. When this
happens, the above 1:4 precision ratio no longer holds
true. For example, if the number of trials is twice as high
in one comparison (i.e., a 1:2 trial count ratio), the indir-
ect comparison will need exactly 4.5 trials to produce
the same precision as one head-to-head trial (see math-
ematical derivation in Appendix 1.a). In reality, however,
to maintain a ratio of 1:2 in the trial count, one would
need six trials (2:4) in the indirect comparison to pro-
duce the same precision as one head-to-head trial. To
produce the same precision as two head-to-head trials,
one would need 2 x 4.5=9 trials, which allows main-
taining the 1:2 ratio with three trials in one comparison
and six in the other (i.e., 3:6 as the trial count ratio).
Table 1 presents the approximate number of trials
required in an indirect comparison under different sce-
narios where the number of trials in the two compari-
sons is unbalanced. The mathematical derivations for all
exact precision ratios are presented in Appendix 1.a.
The cells in underlined italics indicate where the indir-
ect evidence produces the exact precision of the
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corresponding number of trials. The remaining cells in-
dicate where the indirect evidence produces precision
slightly above that of the corresponding number of
head-to-head trials.

In some cases the required number of trials in an in-
direct comparison for a specific trial count ratio pro-
duces a precision corresponding to more than that of a
stated number of single head-to-head trials. For ex-
ample, with a trial count ratio of 1:3, one would require
2 x 5.33=10.66 indirect comparison trials to produce
the precision of two head-to-head trials. However, since
we cannot have fractions of trials, we take the closest in-
teger above 10.66 where the trial count ratio is main-
tained: 12 trials with a trial count ratio of 3:9.

Table 1 can readily be used for quickly and easily
checking how many head-to-head trials the indirect evi-
dence ‘effectively’ corresponds to. That is, if the indirect
evidence produces the precision of, say, three trials, we
can think of the evidence as being as strong as a meta-
analysis of three head-to-head trials. For example, if one
has an indirect comparison with 4 trials comparing A
with C, and 12 trials comparing B with C, the precision
of the indirect comparison corresponds to a meta-
analysis of 3 trials directly comparing A with B (Table 1).
It should be noted that Table 1 is only valid to the extent
that trial sample sizes and trial population variances are
similar across trials, as well as the extent to which het-
erogeneity is absent or ignorable.

Method 2: the effective sample size

Another relatively simple approach to gauging the de-
gree of power and precision from an indirect compari-
son is to consider the collection of trials included in
each comparison as one (large) clinical trial. From a
sample size perspective, following similar mathematic
derivations as the above trial count perspective, the

Table 1 The required number of indirect comparison trials required to produce the same precision as a given number

of direct (head-to-head) trials

Trial  Exact Number of indirect comparison trials required to match precision from the corresponding number of single trials in a
count precision pair wise meta-analysis

ratio  ratio 1 P 3 2 5 10

1 4 1(22) 8 (4:4) 12 (6: 16 (8:8) 20 (10:10) 40 (20:20)
12 45 6 (2:4) 9(36) 15 (5:10) 18 (6:12) 24 (8:16) 45 (15:30)
13 533 8 (2:6) 12 (39 6 (4:12) 24 (6:18) 28 (7:21) 56 (14:42)
1:4 6.25 10 (2:8) 15 (3:12) 20 ( 25 (5:20) 35 (7:28) 65 (13:52)
1:5 7.2 12 (2:10) 18 (3:15) 24 (420 30 (5:25) 36 (6:30) 72 (12:60)
1:6 8.17 14 (212) 21 (3:18) 28 (4:24 35 (5:30) 42 (6:36) 84 (12:72)
1.7 9.14 16 (2:14) 24 (3:21) 32 (4:28 40 (5:35) 48 (6:42) 96 (12:84)
1:8 10.13 8 (2:16) 27 (3:24) 36 (4:32 45 (5:40) 54 (6:48) 108 (12:96)
1:9 11.11 0(2:18) 30 (3:27) 40 (4:36 50 (5:45) 60 (6:54) 120 (12:108)
1:10 12.1 2 (2:20) 33 (3:30) 44 (440 55 (5:50) 66 (6:60) 121 (11:110)
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Table 2 Effective heterogeneity-corrected sample sizes of indirect comparison scenarios with varying degrees of
patient count ratios and heterogeneity in each comparison (A vs. C and B vs. C), but with fixed total sample size of

10,000
Patient ratio Precision ratio B¢ 12c 12 adjusted precision ratio Effective sample size
5,000:5,000 (1:1) 4.00 0% 0% 4.00 2,500
0% 25% 4.60 2,188
0% 50% 533 1,875
25% 50% 640 1,563
50% 50% 8.00 1,250
3,333:6,667 (1:2) 4.50 0% 0% 4.50 2,222
0% 25% 540 1,852
0% 50% 6.75 1,481
25% 0% 491 2,037
25% 25% 6.00 1,667
25% 50% 7.72 1,296
50% 0% 540 1,852
50% 25% 6.75 1,482
50% 50% 9.00 1,111
2,500:7,500 (1:3) 533 0% 0% 533 1,876
0% 25% 6.56 1,524
0% 50% 853 1173
25% 0% 569 1,759
25% 25% 711 1,407
25% 50% 948 1,055
50% 0% 6.09 1,642
50% 25% 7.75 1,290
50% 50% 10.7 938
2,000:8,000 (1:4) 6.25 0% 0% 6.25 1,600
0% 25% 7.81 1,280
0% 50% 104 960
25% 0% 6.58 1,520
25% 25% 833 1,200
25% 50% 114 880
50% 0% 6.94 1,440
50% 25% 893 1,120
50% 50% 125 800
1,667:8,333 (1:5) 7.20 0% 0% 7.20 1,389
0% 25% 9.09 1,100
0% 50% 124 810
25% 0% 7.51 1,331
25% 25% 9.60 1,042
25% 50% 133 752
50% 0% 7.86 1273
50% 25% 102 984
50% 50% 144 694
1,000:9,000 (1:9) 1.1 0% 0% 1.1 900
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Table 2 Effective heterogeneity-corrected sample sizes of indirect comparison scenarios with varying degrees of
patient count ratios and heterogeneity in each comparison (A vs. C and B vs. C), but with fixed total sample size of

10,000 (Continued)

0%
0%
25%
25%
25%
50%
50%
50%

25%
50%
0%
25%
50%
0%
25%
50%

14.3 698
20.2 495
114 878
14.8 675
211 473
11.7 855
153 653
222 450

relationship between the precision of an indirect com-
parison and the precision of a direct meta-analysis turns
out the same (see Appendix 1.b for mathematical deriva-
tions). For example, to produce the same precision as a
head-to-head meta-analysis including 1,000 patients, one
would need a total of 4,000 (4 x 1,000) patients in the
indirect comparison, provided the number of patients is
the same for the two comparisons (2,000:2,000). Taking
the sample size perspective comes with the flexibility of
a possible reversal of the calculation. For example, an in-
direct comparison with 500 patients in the A vs. C com-
parison and 500 patients in the B vs. C comparisons
would produce the same precision as a direct compari-
son with 250 patients [(500 + 500)/4]. Likewise, in a sce-
nario with 1,000 patients in comparison A vs. C, and
10,000 patients in comparison B vs. C, the exact preci-
sion ratio is 12.1 (see Table 1), and so the effective direct
meta-analysis sample size would be (1,000 + 10,000)/
12.1 =909.

Often, the sample sizes in the two comparisons do not
line up to produce the exact precision ratio presented in
Table 1 and Table 2. Letting n4¢ and npc denote the sample
sizes for the comparisons of A vs. C and B vs. C, respect-
ively, a more general formula for the effective indirect sam-
ple size is (see Appendix 1.b).

(nac x npc)/(nac + npc)

For the above example, the effective sample size using this
formula is therefore (1000 x 10000) /(1000 + 10000) = 909.

The above simple approach to calculate the effective
indirect sample size does not consider the possibility
that statistical heterogeneity exists across trials. When
heterogeneity is present, the effect estimates that go
into the indirect estimate incur a higher degree of
variation, and so the effective indirect sample size cor-
responding to a head-to-head meta-analysis will be
smaller than with the above simple approach. In line
with already-established heterogeneity corrections for

meta-analysis required sample sizes [23,24,28], we put
forward that the actual number of patients in each of
the comparisons informing the indirect estimate can
be penalized by the additional variation explained by
heterogeneity. In line with previous proposals, we
penalize for the ‘lack of homogeneity’ [23,24] using the
popular measure of heterogeneity, I° [34], as a basis
for the penalization.

Consider the example where a meta-analysis of A vs. C
includes 6,000 patients and a meta-analysis of B vs. C
includes 8,000 patients, and assume the estimated degree of
heterogeneity for A vs. C is 50% (Bc=50%) and 25% for B
vs. C (I3c=25%). Then the lack of homogeneity is 100%-
50% = 50% for A vs. C and 100%-25% = 75% for B vs. C. We
penalize the actual sample size by multiplying the actual
sample size by the lack of homogeneity, so that the pena-
lized sample size of A vs. C is 50% x 6,000 = 3,000, and the
penalized sample size for B vs. C is 75% x 8,000 = 6,000.
The total penalized number of patients in the indirect com-
parison is then 3,000 + 6,000 = 9,000, the patient count ratio
is 1:2 (same as 3,000:6,000), the precision ratio is 4.5 (see
Table 1), and so the effective heterogeneity-corrected sample
size in this indirect comparison is 9,000/4.5 = 2,000.

Following the above example, the general formula for a
heterogeneity-corrected effective sample size for indirect evi-
dence is

(nAC X (1 — IACZ) + npc X (1 — IBCZ))/PreCision ratio

where n4¢ and npc are the actual sample sizes (before cor-
rection) in the meta-analyses of A vs. C and B vs. C, respect-
ively, and where the precision ratio is based on the
heterogeneity-corrected sample sizes (see Table 1 and
Table 2). In the appendix we provide a general formula for
the precision ratio.

As with the above example of non-penalized sample
sizes, the penalized sample sizes may not always line up
to match the precision ratio given in Table 1 and Table 2.
The more general formula for the heterogeneity-
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corrected effective sample size is (see Appendix 1.b).

[(mac x (1= 1ac?)) % (mac x (1—Isc?))]/ [mac x (1 = Lic?))
+ (mpc x (1= Isc?))]

One immediate limitation of the above-proposed sam-
ple size heterogeneity correction is the fact that I°s are
typically unreliable and unstable in meta-analyses in-
cluding a limited number of trials and will depend on
the effect metric used [34-36]. In most cases, it will
therefore be preferable to simply assume some plausible
degree (percentage) of heterogeneity derived from a mix
of clinical considerations and the I? estimate at hand.
Typically, an assumption of 25% or 50% heterogeneity
will be reasonable in the context of sample size consid-
erations [22]. Table 2 illustrates the effective sample size
for various indirect comparison scenarios including a
total of 10,000 patients, under different combinations of
heterogeneity corrections (one including no correction).

Another limitation of the sample size approach is the in-
herent assumption that sample size is a good proxy for pre-
cision. This may not be true if there are some important
differences in event rates (for binary data) or counts (count
data), or if there are population differences in trials that re-
sult in notably different standard deviations, but not neces-
sarily different effect estimates. To curb this limitation for
binary data, one may for example choose to focus on the ef-
fective number of events. A more universally applicable ap-
proach focuses on a measure called statistical information.
We describe this below.
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The effective statistical information

Statistical information, also sometimes referred to as
Fisher information, is a more complex statistical meas-
ure for gauging the degree of precision present in a data
set. For pairwise meta-analyses, the statistical informa-
tion is equal to the inverse of the pooled variance (i.e.,
one divided by the variance), which is also the measure
of precision [37]. For indirect comparisons, the statistical
information (precision) is equal the inverse of the pooled
indirect variance. That is, with variances V¢ and Vpc
for comparisons A vs. C and B vs. C, the indirect vari-
ance is Vyc+ Vae so indirect statistical information is
1/(Vac + Vpc). Because the variance incorporates hetero-
geneity and is dependent on the number of trials and
the sample size, no further calculations or adjustments
are needed.

A major disadvantage of statistical information in
meta-analysis is that it operates on a scale that no statis-
tically non-sophisticated reader could easily grasp [38].
The statistical information may however be useful in the
context of sample size requirements since it is possible
to calculate the required statistical information (analo-
gous to the required sample size) and compare the ac-
tual statistical information present in an indirect
comparison with such a yardstick for sufficient power.

Strength and limitations of the approaches
Each of the above approaches comes with strengths and
limitations. These are outlined in Table 3.

Table 3 Strengths and limitations of the three approaches for gauging the effective degree of power and precision in

indirect comparisons

Approach Strengths

Limitations

Effective number of trials 1. Easy and fast to calculate

Effective sample size (ignoring
heterogeneity)

1. Easy and fast to calculate

2. Exact calculations for all trial count
ratios

3. Sample size (no. of patients)
resonates well with clinicians

Effective sample size (correcting
for heterogeneity)

1. Exact calculations for all precision
ratios

2. Accounts for heterogeneity
3. Easy to calculate

4. Sample size (no. of patients)
resonates well with clinicians

Effective statistical information 1. Theoretically statistically exact

1. Only valid to the extent trial sample sizes are equal
and heterogeneity is absent

2. Lacks flexibility for approximate trial count ratios
1. Does not account for heterogeneity

2. Assumes equal meta-analysis population variances across
comparisons

1. Assumes equal meta-analysis population variances across
comparisons

2. Depends on precise heterogeneity estimation

1. Statistical information does not resonate well with a clinical
audience

2. Not straight forward to calculate

3. Depends on precise heterogeneity variance estimation or requires
elicitation of Bayesian variance priors
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Weak links

So far we have only described situations where the indir-
ect estimate is obtained through one common compara-
tor. However, it is worth noting that indirect evidence
may often come from scenarios where the link between
two treatments of interest must go through two or more
comparators. For example, if we wish to compare A with
D and the following three comparisons are available—A
vs. B, B vs. C and C vs. D—then the link between A and
D goes through both B and C. The indirect variance is
now a sum of three (rather than two) direct variances,
Vag + Ve + Vep. We would therefore expect compar-
ably smaller precision. Calculating the effective number
of trials in the two common comparator example, we
find that with an equal number of trials, say 3:3:3, the
precision of the indirect comparison corresponds to that
of only one direct trial, that is, an exact precision ratio
of 1:9. With a more unbalanced number of trials, say
8:1:8, we get an exact precision ratio of 1:21.

Such consistently large direct to indirect precision
ratios indicate that indirect comparisons with two (or
more) comparators in the link will typically add very lit-
tle precision. For this reason we dub them ‘weak links.’
In the context of combining direct and indirect evidence
as we address below, it seems that weak links will typic-
ally only add an ignorable small amount of precision to
the final estimate and thus, for simplicity, may be
ignored for sample size and power considerations in in-
direct comparisons and network meta-analysis.

Effective sample size in treatment networks

The three-treatment loop

The simplest example of a combination of direct and in-
direct evidence is the three-treatment loop where preci-
sion is added to the comparison of A and B by
borrowing strength from an indirect comparison based
on some common comparator C. Whether our measure
of precision (information) is the number of trials, the
sample size or the statistical information, the total
amount of precision available for a particular compari-
son in a three-treatment loop is conceptually the sum of
information in the direct evidence and in the indirect
evidence.

To calculate the effective number of trials informing a
particular comparison (e.g., A vs. B) in the combined
evidence, we simply add the effective number of trials in
the indirect evidence to the number of trials in the
head-to-head evidence.

To calculate the effective number of patients inform-
ing a particular comparison, we simply add the effective
number of patients in the indirect evidence to the num-
ber of patients in the head-to-head evidence. If hetero-
geneity adjustments have been applied for the indirect
evidence, a similar adjustment should be applied to the
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direct evidence (we illustrate this in our worked example
below).

To calculate the statistical information informing a
particular comparison, we simply take the sum of the in-
verse indirect variance and the inverse direct variance.
Alternatively, the statistical information may be
extracted directly from the statistical software package
used to run the network meta-analysis. (Note that if
multi-arm trials are included in the analysis, some
adjustments for correlations are needed).

Multiple sources of evidence

In many treatment networks two or more sources of in-
direct evidence informing some (or all) of the compari-
sons may exist. For example, two active treatments A
and B may both have been compared to standard-of-
care and placebo. In this case, indirect evidence exists
from two sources. Extending the three-treatment ex-
ample above, estimating the total effective amount of in-
formation is simply a task of summing all indirect and
direct evidence.

In a similar situation, multiple sources of indirect evi-
dence may exist where no direct evidence exists. In this
case, the effective number of trials, sample size or statis-
tical information is simply obtained by summing all in-
direct information.

We previously discussed ‘weak links.” Since these add a
relatively small amount of information, one may chose
to ignore them without notable loss of information (but
with ease in the calculations). This goes for both situa-
tions where direct evidence and indirect evidence are
being combined, and where there are multiple sources of
indirect evidence.

Power and sample size requirements in network meta-
analysis

Before getting into sample size and power considerations for
indirect comparison meta-analysis and network meta-ana-
lysis, we first outline the already well-established framework
for pairwise meta-analysis. We then extend the concept to
indirect comparison meta-analysis and lastly to network
meta-analysis.

Sample size requirements for direct meta-analysis

Several methodological studies have explored sample
size and power considerations for direct (head-to-head)
meta-analysis [14,15,19-24,26]. By now, it has been well
established that the required sample size (i.e., the
required number of patients) for a meta-analysis, should
be at least that of a large well-designed clinical trial [16].
Sample size calculations are derived from an a priori es-
timate of a treatment effect, d, that investigators wish to
demonstrate; the associated variance around that treat-
ment effect, V% and a maximum risk of type I error, a,
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(i.e., maximum false-positive risk) and type II error, S,
(i.e., maximum false-negative risk). As a basis, one can
use the required sample size corresponding to a large
multicenter clinical trial as the required sample size for
the head-to-head meta-analysis [16,19,20,23,24].

N=Cx (z1-a)2 +zl,b)2 x V*/d*

Here z;.,/; and z;.4 are the (1-a/2)th and (1-B)th per-
centiles of a standard normal distribution, and C is a
constant depending on the randomization ratio and
number of treatment arms (C =4 with a randomization
ratio of 1:1 and two treatment arms).

If statistical heterogeneity exists across the included
trials in a meta-analysis, one can adjust the calculated
sample size to account for the additional variation (i.e.,
increased uncertainty) [21-24,28]. This is achieved by
multiplying the required sample size, N, by a heterogeneity
correction factor 1/(1-H), where H has a similar interpret-
ation as the well-known measure I° (the percentage of
variation in a meta-analysis explained by heterogeneity)
and is the a priori or maximum acceptable degree of het-
erogeneity [21-24,28]. Empirical evidence and simulations
have demonstrated that such adjustments perform well in
maintaining the desired statistical power [21,22,24].

An alternative approach to dealing with heterogeneity is
to calculate the required statistical information (also known
as Fisher information) [17,25]. In pairwise meta-analysis the
statistical information is simply the inverse of the pooled
variance, that is, the pooled precision. The required statis-
tical information resembles the required sample size.

RI = C x (Z17a/2 +Zlfb)2/d2

A simulation study has demonstrated adequate perform-
ance of the required statistical information when the het-
erogeneity is modeled with certain Bayesian priors [17].

Information fractions and power in direct meta-analysis

At any point in a direct meta-analysis before the cumu-
lative amount of evidence has surpassed the required
sample size (or required statistical information), we can
calculate two useful measures to gauge the strength of
evidence. The first measure, the information fraction
(IF), is the accrued number of patients, n (or statistical
information), divided by the required sample size (or
required statistical information) [19,23].

IF =n/N

This measure gives us an idea of how far we have
come and how much farther of a distance there is to the
yardstick—our required sample size.

The second measure is a retrospective power calcula-
tion. Re-arranging the expression of the required sample
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size, we can retrospectively estimate the power (1-5) of
the current data

1-f=07! (—Z1—a/2 + \/W)

where @ is the cumulative standard normal distribution
function.

Information fractions and power in indirect comparisons

So far we have described method for estimating the ef-
fective sample size in indirect and combined evidence,
as well as methods for estimating the required sample
size and gauging the strength of evidence in pairwise
meta-analyses. We now combine these measures to
evaluate the strength of indirect comparisons and net-
work meta-analyses. For the remainder of this article we
concentrate on the number of patients, but our example
and calculations can easily be carried out using the num-
ber of trials or statistical information.

We have introduced the effective sample size for indirect
evidence. In line with its definition, we can derive the ef-
fective indirect information fraction and the effective power
in an indirect comparison. The steps required to do this are
as follows. First, calculate the effective indirect sample size.
Second, calculate the required sample size for a direct
meta-analysis. Third, to get the effective indirect informa-
tion fraction, simply divide the effective number of patients
in the indirect comparison by the required sample size for a
direct comparison. Fourth, to calculate the power of the
available indirect evidence, simply insert the effective indir-
ect sample size as the 7 in the above formula.

Information fractions and power in network meta-analysis
The steps required to calculate the information fraction
and power of treatment comparisons that are both
informed by direct and indirect evidence or by multiple
sources of indirect evidence are similar to the step
required for indirect comparisons. First, calculate the ef-
fective sample size for the comparison of interest by
summing up the evidence from the available sources (we
described how to do this above). Second, as before, cal-
culate the required sample size for a direct meta-ana-
lysis. Third, as before, calculate the effective information
fraction by dividing the effective number of patients by
the required sample size. Fourth, calculate the power of
the available evidence by inserting the effective sample
size as the # in the above formula.

Results and discussion

Worked example - interventions for smoking cessation

A recent MTC explored the efficacy of five different
interventions for smoking cessation, low-dose NRT
(<22 mg nicotine patches), which is an over-the-
counter intervention, and four newer and more
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expensive interventions, combination NRT (i.e., patch
plus gum), high-dose NRT (>22 mg patches), bupro-
prion and varenicline [31].The published MTC pro-
vides a useful data-set to illustrate the issues we
have raised in this article. Low-dose NRT is already
well established and well known to yield about a
50% higher success rate than inert control interven-
tions (i.e., relative risk of approximately 1.50). To
consider any of the four newer treatments worth-
while, one could argue for the need to demonstrate
at least an additional 20% efficacy. These considera-
tions make up the basis for the required sample size
considerations. Keep in mind that the published
MTC has much higher rates of effective sample size
than the assumptions we make in this example.[31]

The median smoking cessation success rate at 6
months for patients in the inert control group is
15.0% across the 79 included trials reporting at this
time point. Assuming a 1.5 relative risk, we would ex-
pect a 22.5% success rate with low-dose NRT. An
additional 20% relative efficacy would suggest a 26.0%
success rate (with any of the newer treatments).
Accepting a maximum type I error of a=5% and a
power of (1-B)=90%, the required sample size to
demonstrate that any of the newer interventions are
at least 20% better than low-dose NRT is 6,303. To
assess the strength of the evidence contained in the
treatment network, we calculate the effective sample
size (number of patients) for each of the newer treat-
ments compared with low-dose NRT. We do this with
and without taking heterogeneity into account. We
subsequently calculate the information fraction and
power based on the effective sample size. Figure 1
presents the number of trials, number of patients and
degree of heterogeneity in the comparisons informed
by head-to-head evidence. Figure 2 presents the
sources of direct and indirect evidence for the four
comparisons of interest (newer treatments vs. low-
dose NRT).

For low-dose NRT vs. combination NRT, the direct
evidence includes 1,664 patients (and no heterogeneity).
Indirect evidence exists with inert control as the com-
mon comparator. The comparison of low-dose NRT and
inert control includes 19,929 patients, but with 63% het-
erogeneity, so the heterogeneity penalized sample size is
19,929 x (1-0.63) = 7,374. The comparison of combin-
ation NRT vs. inert control includes 1,848 patients (and
no heterogeneity). The effective indirect sample size
without heterogeneity penalization (7;,,4;e.;) and the ef-
fective indirect sample size with heterogeneity penaliza-
tion (#,,4irect-ren) are therefore

Hindirect = (19929 % 1848) /(19929 + 1848) = 1691
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and
Hindirect—pen = (7374  1848) /(7374 + 1848) = 1478

Adding this to the direct evidence sample size, we get
an effective total sample size of

NTotal = 1691 4 1664 = 3355

and

Number of trials

Inert Control
8 % 4
Varenicline Combination
NRT
1
4
1

a1 42 %

Buproprion High dose NRT

Low dose NRT

Number of patients

Inert Control

4331 % 1848
Varenicline 12567 2487
32

740

Combination
NRT

1664

Buproprion High dose NRT

Low dose NRT

Heterogeneity
Inert Control
fes o Combinati
Varenicline 39% g3a 60% omN;; on
0%
0%
0%

Buproprion 19% High dose NRT

Low dose NRT

Figure 1 The number of trials, number of patients and degree
of heterogeneity (12) for each comparison in the treatment

network that is informed by head-to-head evidence.
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Low dose NRT vs combination NRT
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NTotal—pen = 1478 4 1664 = 3142

These two total effective sample sizes correspond to
an information fraction of 53% and 50% (half of the re-
quire sample size has been accumulated) and a statistical
power of 66% and 63%. Table 4 presents the direct ef-
fective indirect and total sample sizes and the

corresponding information fractions and statistical
power for all four comparisons of the newer treatments
vs. low-dose NRT. The calculations for the remaining
three comparisons are presented in Appendix 2.

In the network meta-analysis of interventions for smok-
ing cessation, high-dose NRT and varenicline were both sig-
nificantly better than low-dose NRT and demonstrated

Table 4 The effective sample sizes and corresponding information fractions and power estimates from the four

comparisons of newer treatments vs. low-dose NRT

Comparison Effective Effective Total Information Statistical Statistical Network
(vs. low-dose head-to-head indirect effective fraction power power to meta-analysis
NRT) sample sample sample detect odds ratio

size size size observed estimate

improvement* (95% credible interval)

Combination NRT 1,664 1,691 3,355 53% 66% - 1.05 (0.76 - 1.41)
High-dose NRT 3,605 2211 5816 92% 88% >99% 132 (111 -157)
Buproprion - 7,707 7,707 >100% 95% - 0.99 (0.86 - 1.14)
Varenicline 720 3,625 4,268 68% 76% >99% 1.38 (1.15 - 1.64)
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effect estimates larger than the a priori considered minim-
ally important difference. For these comparisons, high-dose
NRT is supported by 88% power, and varenicline is sup-
ported by 76% power. Considering that the true effects of
high dose NRT and varenicline over low dose NRT are
much higher than the 20% increase that was assumed for
these calculations, the true power of these comparisons are
also much higher. For example, if the MTC actual effects
for varenicline (i.e., a 38% increase in smoking cessation
compared with low dose NRT) are used, the statistical
power to detect this difference then exceeds 99%. Combin-
ation NRT and buproprion both yielded effect estimates
very similar to low-dose NRT. Considering that the two are
supported by 66% and 95% power, respectively, and that
none of the two effect estimates appear superior, it should
be reasonable to infer that the two interventions do not
offer any noteworthy benefit over low-dose NRT.

Conclusions

In this article we have outlined available methods for
gauging the strength of the evidence in a network meta-
analysis using sample size and power considerations. We
recommend sample size considerations in the context of
the number of patients, as the required calculations are
relatively straightforward and will resonate well with
most clinicians and decision-makers. The methods we
have outlined are of high value to regulatory agencies
and decision makers who must assess the strength of the
evidence supporting comparative effectiveness estimates.

Appendix
1.a Calculating the effective number of trials

Consider the situation where three treatments, A, B and
C, have been compared head to head in randomized
clinical trials. For any one trial, assume that the esti-
mated treatment effect has variance v. For a meta-
analysis of 2k trials, using the inverse variance approach
would produce an estimated variance of the pooled
treatment effect of 0°/2k. By the expected variance of an
indirect comparison, if we have two comparison includ-
ing k trials, we would expect an indirect variance esti-
mate of 0°/k + 0°/k = 20°/k. Now letting R denote a ratio
describing the relationship between the precision of in-
direct and direct evidence; we can derive R as follows

Rx (v/2k) =2v/k
R=14

That is, in the scenario where the number of trials
are equal in the two comparisons informing the in-
direct comparison (and the other above assumptions
are met), it would require four trials in the indirect
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evidence to produce the same precision as that cor-
responding to a single head-to-head trial. We can
generalize this ratio to the situation where the num-
ber of trials is not equal in the two comparisons
informing the indirect evidence. Let k4c and kpc be
the number of trials informing the comparison of A
vs. C and B vs. C, respectively. For a single meta-
analysis, with ksc+ kpc trials we would expect a
variance of the pooled effect of o*/(kuc+kgc).
Moreover, we would expect a variance from the in-
direct comparison of ¢*/kuc + v/kgc. Proceeding as
above we then have

R. (V/(kAc + kgc)) = V/kAC + V/kBC
R. (V/(kAC + kgc)) = . (kBC + kAC)/(kBC~kAC)

R = (kgc + kac)?/ (ksckac)

This formula creates the basis for the results pre-
sented in Table 1.

1.b Calculating the effective number of patients

Consider the situation where three treatments, A, B
and C, have been compared head to head in rando-
mized clinical trials. Assume that the population
variance of comparative treatment effects is the
same for A vs. B, A vs. C and B vs. C, and assume
the population variance produced by a fixed-effect
pairwise meta-analysis can be regarded as a large
well-designed clinical trial. Let n4p, nac and npc de-
note the meta-analysis sample size (total number of
patients) for the three comparisons A vs. B, A vs. C
and B vs. C, respectively.

We are interested in finding the ratio between the vari-
ance of the direct meta-analysis pooled treatment effect
estimate and the variance of the indirect meta-analysis
pooled treatment estimate. Let R denote this ratio, and let
A aﬁc and a%c denote the population variances for the
three comparisons (where we assume 073 = 03¢ = 03¢ = 0°).
Then we have

0% /(R.(nac + npc)) = 6 /nac + 6*/npc
1/(R.(nac + npc)) = (nac + npc)/(nac-nac)
R = (nac.ngc)/((nac + nsc)’

Thus, by multiplying this ratio with the total in-
direct sample size (nac+ npc) we have that the for-
mula for the effective indirect sample size is

n = (nac.npc)/(nac + npc)

When heterogeneity exists for one or both of the com-
parisons in the indirect evidence, one can penalize the
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sample size by multiplying by the ‘lack of homogeneity,
much similar to what is done for a heterogeneity correc-
tion of a required meta-analysis sample size. With esti-
mates of the percentage of variation in the meta-analysis
due to between-trial heterogeneity for A vs. C, 5 and
for B vs. C, I3 we can derive penalized sample sizes
within each comparison

nac—pen = nac.(1-Iac?)

ngc_pen = npc(1-Ipc?)

and subsequently use these penalized sample sizes in the
formula for the effective indirect sample size.

2. Information fraction and power calculations -
worked example

For low-dose NRT vs. high-dose NRT, the direct evidence
includes 3,605 patients (and no heterogeneity). Indirect evi-
dence exists with inert control as the common comparator.
The comparison of low-dose NRT and inert control
includes 19,929 patients, but with 63% heterogeneity, so
the heterogeneity penalized sample size is 19,929x(1-0.63)
=7,373. The comparison of high-dose NRT vs. inert con-
trol includes 2,487 patients, but with 60% heterogeneity, so
the heterogeneity penalized sample size is 2,487x(1-0.60)
=1,492. The effective sample size from this indirect com-
parison is therefore

Hindireer = (19929 x 2487) /(19929 + 2487) = 2211
and
Hindirect—pen = (7373 % 995) /(7373 4+ 995) = 877

A second indirect comparison with varenicline as the
common comparator only includes 32 patients in one of
the two involved comparisons. The effective sample size of
this indirect comparison (#,giec: = 31) is so comparably
small that we choose to ignore it. Adding the above calcu-
lated indirect sample sizes to the direct evidence sample
size, we get effective total sample sizes of

NTotar = 3605 + 2211 = 5816
and
NTotal—pen = 3605 + 877 = 3797

This total effective sample sizes correspond to in-
formation fractions of 92% and 60% and statistical
power estimates of 88% and 72%.

For low-dose NRT vs. buproprion, no direct evi-
dence exists. Indirect evidence exists through inert
control as the common comparator. As above, the
sample size for low-dose NRT vs. inert control is
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19,929, or 7,373 if heterogeneity penalized. The
sample size for buproprion vs. inert control is
12,567, or 12,567x(1-0.39) = 7,666 when heterogen-
eity is penalized. Therefore, the total effective sam-
ple sizes (which are equal to the effective indirect
sample sizes) are

NTotal = Nindirect
= (19929 X 12567)/(19929 + 12567) =7707

and

NTotal—Pen = Mindirect—Pen
= (7373 x 7666) /(7373 + 7666) = 3758

This total effective sample sizes correspond to infor-
mation fractions of >100% and 60% and statistical power
estimates of 95% and 71%.

For low-dose NRT vs. varenicline, the direct evidence
includes 740 patients (and no heterogeneity). As above,
the sample size for low-dose NRT vs. inert control is
19,929, or 7,373 if heterogeneity is penalized. The sam-
ple size for varenicline vs. inert control is 4,331, or 4,331
x (1-0.69) = 1,343 if heterogeneity is penalized. There-
fore, the total indirect sample sizes are

Hindireer = (19929 x 4331)/(19929 + 4331) = 3558
and

Hindirect—pen = (7373 x 1343) /(7373 + 1343) = 1136
and so the total effective sample are

Notal = 740 4 3558 = 4268
and

NTotal—pen = 740 + 1136 = 1876

All power, and information fraction calculations above
are geared to detect an assumed relative improvement in
smoking cessation of 20%. All calculations are highly
sensitive to the assumed relative improvement. In par-
ticular, assuming larger improvements would result in
substantially larger power and information fraction
estimates.
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