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Abstract 

Background  Objective measures of screen time are necessary to better understand the complex relationship 
between screen time and health outcomes. However, current objective measures of screen time (e.g., passive sens-
ing applications) are limited in identifying the user of the mobile device, a critical limitation in children’s screen time 
research where devices are often shared across a family. Behavioral biometrics, a technology that uses embedded 
sensors on modern mobile devices to continuously authenticate users, could be used to address this limitation.

Objective  The purpose of this scoping review was to summarize the current state of behavioral biometric authen-
tication and synthesize these findings within the scope of applying behavioral biometric technology to screen time 
measurement.

Methods  We systematically searched five databases (Web of Science Core Collection, Inspec in Engineering Village, 
Applied Science & Technology Source, IEEE Xplore, PubMed), with the last search in September of 2022. Eligible stud-
ies were on the authentication of the user or the detection of demographic characteristics (age, gender) using built-in 
sensors on mobile devices (e.g., smartphone, tablet). Studies were required to use the following methods for authen-
tication: motion behavior, touch, keystroke dynamics, and/or behavior profiling. We extracted study characteristics 
(sample size, age, gender), data collection methods, data stream, model evaluation metrics, and performance of mod-
els, and additionally performed a study quality assessment. Summary characteristics were tabulated and compiled 
in Excel. We synthesized the extracted information using a narrative approach.

Results  Of the 14,179 articles screened, 122 were included in this scoping review. Of the 122 included studies, 
the most highly used biometric methods were touch gestures (n = 76) and movement (n = 63), with 30 studies using 
keystroke dynamics and 6 studies using behavior profiling. Of the studies that reported age (47), most were per-
formed exclusively in adult populations (n = 34). The overall study quality was low, with an average score of 5.5/14.

Conclusion  The field of behavioral biometrics is limited by the low overall quality of studies. Behavioral biometric 
technology has the potential to be used in a public health context to address the limitations of current measures 
of screen time; however, more rigorous research must be performed in child populations first.

Systematic review registration  The protocol has been pre-registered in the Open Science Framework database 
(https://​doi.​org/​10.​17605/​OSF.​IO/​92YCT).
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Introduction
Screen time is a critical health behavior related to a vari-
ety of health outcomes in children [1–6]. Historically, 
measuring screen time has been reliant on self-report 
or proxy-report measures [7], due in part to the nature 
of digital media consumption (e.g., in-home computer 
and TV use). The introduction of mobile devices (tab-
lets, smartphones) has substantially altered the land-
scape of digital media consumption, and these devices 
have become the favored media choice for children due 
to their portability, interactivity, and capacity to stream 
a wide range of content [8–11]. Self-report measures are 
of limited validity in assessing mobile screen use due to 
the intermittent and on-demand use of mobile devices, 
which hamper one’s ability to retrospectively report 
screen time [7, 12, 13]. In addition to not being sensi-
tive enough to sufficiently capture all mobile screen use, 
self-report measures are also subject to recall bias and 
social desirability bias [14, 15]. Given the proliferation of 
mobile devices [8, 10], there has been a growing demand 
to advance our current screen time measures to more 
effectively capture mobile screen use [16], specifically 
using objective measures [17].

Researchers have begun to use passive sensing applica-
tions (e.g., Chronicle) to overcome the limitations of sub-
jective reports and which unobtrusively monitor mobile 
screen use on mobile devices [13, 18]. Chronicle is an 
Android passive sensing application that tracks the dura-
tion, frequency, and timing of data, general application 
type, and application status (foreground vs. background) 
using Google API every 15 s [13]. Benefits of passive 
sensing applications include a reduced researcher and 
participant burden compared to self-report measures and 
lower cost for researchers to employ. However, while this 
data can be relevant for tracking the duration of use and 
the context of use, these passive sensing applications are 
not able to capture who specifically is using the device. 
For child screen time research, this limitation in identify-
ing the user of a device is of particular concern as mobile 
devices are often shared between siblings or between the 
parent and the child [12, 19]. Therefore, identifying the 
user of the device is critical to optimizing the potential 
for passive sensing methods in tracking objective screen 
use metrics in children.

Behavioral biometrics could be used to address this 
shortcoming of objective screen time measurement by 
identifying users of mobile devices. Modern mobile 
devices contain a variety of sensors (e.g., accelerometer, 
gyroscope, magnetometer, touch) that collect multiple 
data streams and can provide characteristic information 
about the user. These sensors provide the basis for behav-
ioral biometric authentication [20–22]. Unlike physiolog-
ical biometrics (e.g., fingerprint, iris, facial recognition), 

behavioral biometrics do not require additional hardware 
in modern mobile devices [23, 24], making it a feasible 
research tactic for screen time measurement. Addition-
ally, behavioral biometrics can provide continuous user 
authentication, whereas physiological biometrics are 
typically a one-time authentication for gaining access to a 
device [23]. There are several types of behavioral biomet-
rics used for authentication, including behavior profiling, 
keystroke dynamics (typing dynamics), touch dynamics, 
and motion behavior [23]. Behavior profiling uses data 
such as the type of applications being used and battery 
life (host-based approach) as well as calls, texts, and GPS 
location (network-based approach) for user authentica-
tion [21]. This type of authentication has been used for 
fraud detection systems, in which unusual activities (e.g., 
calls, texts) and a new location can identify device theft 
and subsequently initiate a fraud protection mechanism 
[25]. Keystroke dynamics involves the characteristic way 
in which an individual types, specifically identifying the 
habitual typing pattern [21]. There are two types of key-
stroke dynamics, including static text, which analyzes 
a fixed text (e.g., a password), and dynamic text, which 
analyzes free-living text from participants [26]. Keystroke 
dynamics have largely been used for fraud detection and 
for authentication into computers or applications [26]. 
Touch dynamics, or touch gestures, evaluates touch 
strokes (size, length, speed, pressure, direction) and 
their corresponding coordinates on the touchscreen of 
a phone. Authentication using touch dynamics began 
as mobile devices were developed without a physical 
keyboard and rather a touchscreen [20]. Lastly, motion 
behavior authentication relies on the distinct movement 
patterns of individuals holding and interacting with a 
mobile device [27, 28].

Data produced by these sensors can be harnessed 
without additional hardware, evidenced by the grow-
ing body of research in the field of behavioral biometric 
authentication [21, 24, 29]. In child screen time research, 
employing continuous user identification may prove use-
ful, especially when the device is being shared among a 
child and their family. Furthermore, applying behavioral 
biometric technology to screen time may be a relatively 
inexpensive solution, as it leverages built-in technology 
[24]. These benefits of behavioral biometrics are impor-
tant attributes to consider when applying this technology 
to other contexts.

Behavioral biometric authentication is a highly estab-
lished field of literature within cybersecurity; however, 
this technology has not yet been applied to objective 
screen time measurement research, to continuously iden-
tify the user of the mobile device [21, 30]. In order to 
begin applying this technology to screen time measure-
ment, it is important to have an updated understanding 
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of behavioral biometric technology and fit this updated 
understanding within the perspective of screen time 
research. The purpose of this scoping review was to first 
summarize the current state of behavioral biometric 
authentication, including identifying the behavioral bio-
metric methods and data streams used, the characteris-
tics predicted, and the model evaluation metrics used. 
This review also sought to characterize these findings 
within the scope of applying behavioral biometric tech-
nology to address the critical limitations of current 
measures of screen time to provide future directions for 
applying this technology to a public health context.

Methods
This systematic review was conducted in accord-
ance with the Preferred Reporting Items for System-
atic Reviews and Meta-Analyses extension for Scoping 
Reviews (PRISMA-ScR) Checklist [31] and was pre-
registered in the Open Science Framework database 
(https://​doi.​org/​10.​17605/​OSF.​IO/​92YCT).

Information sources, search, and screening
Literature searches were conducted in Web of Science 
Core Collection, Inspec in Engineering Village, Applied 
Science & Technology Source, IEEE Xplore, and Pub-
Med, all of which were selected for their relevance to the 
topic and database size. The final database search was 
conducted on September 19, 2022. All authors and col-
laborators discussed the search strategy and the query 
strings specific to each database. Searches used keywords: 
smart device, tablet, phone, smartphone, handphone, 
mobile, Android, iOS, sensor, accelerometer, gyroscope, 
magnetometer, touch, biometric, hand, motion, move, 
swipe, keystroke, detect, verify, authenticate, infer, pre-
dict, determine, and classify, with Boolean operators, 
wildcard, and truncation used. The comprehensive list of 
search terms with notation specific to each database can 
be found in Additional file 2: Supplementary Table 2. The 
primary author (OF) performed the initial search. The 
search yielded 6,161 results from Web of Science Core 
Collection, 11,181 results from Inspec, 787 from Applied 
Science & Technology Source, 3584 from IEEE Xplore, 
and 823 from PubMed, for a total of 22,537 studies. Refer-
ences were exported to EndNote (Clarivate, London, UK), 
where an initial duplicate screen was completed using the 
“remove duplicates” function. Following this, references 
were exported to Covidence (Melbourne, Australia) for 
title and abstract screening, where duplicates were also 
removed, bringing the total studies for title and abstract 
screening down to 14,179. The primary author (OF) 
and an additional research assistant screened the titles 
and abstracts of the 14,179 studies on Covidence. Both 
reviewers established quality control of their screening 

process prior to independently screening the articles. 
This was done by screening 600 of the same articles inde-
pendently and ensuring reviewers had consistency above 
80%. Consistency between reviewers was met (99.9%) 
and then reviewers divided the remaining articles and 
independently screened the title and abstracts of those 
articles. Following title and abstract screening, 13,972 
articles were excluded, and 207 articles were left for full 
text retrieval and screening. Four articles were not able 
to be located using the Interlibrary Loan (ILL) service; 
therefore, 203 articles were retrieved for eligibility assess-
ment. The primary author (OF) reviewed the full texts of 
the 203 articles to assess whether these articles fully met 
the predefined inclusion and exclusion criteria. Of the 203 
articles, 122 articles were considered eligible for inclusion 
and were extracted (Fig. 1).

Eligibility criteria
Studies were required to focus on the sensors of mobile 
devices, defined as tablets or smartphones [32]. These 
sensors needed to be built-in to the device, including 
but not limited to motion sensors, accelerometer, gyro-
scope, magnetometer, and touch. Studies were eligible if 
they used these sensors for verification, detection, and/
or authentication of the device user. Using an adapted 
version of the Meng 2015 [23] framework of biometric 
authentication, articles were required to focus on behav-
ior profiling, keystroke dynamics (typing dynamics), 
touch dynamics, or motion behavior. Because the first 
smartphone (i.e., iPhone) was released in 2007 [33], and 
modern mobile tablets were developed after this in 2010, 
only articles after 2007 were included. Articles in a peer-
reviewed academic source and published in English were 
eligible for inclusion. Articles that simulated data and did 
not collect data on human participants were excluded. 
Studies were excluded if they used other technology and/
or required additional equipment beyond the mobile 
device (e.g., sensor glove, stylus) for verification. These 
articles were excluded because of their limited applica-
bility to screen time measurement, as the goal of apply-
ing this technology would be to capture the typical way 
in which the child is interacting with their shared device. 
Articles that evaluated smart watches, fitness tracking 
devices, or wearable sensors were excluded. These arti-
cles were excluded because the tablet and smartphone 
are the preferred choice for digital media consumption in 
children [34] and are more closely related to health out-
comes (e.g., sleep) [35]. Lastly, while the purpose of this 
review was to characterize these findings within the lens 
of child screen time measurement, we did not limit our 
search to only include studies on children. We included 
studies on adult populations since it is a relatively newer 
field and area of application to children and to inform 

https://doi.org/10.17605/OSF.IO/92YCT
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future research on child populations from the current lit-
erature on adult biometric authentication.

Data extraction
The primary author (OLF) extracted study characteris-
tics (sample size, age, gender), data collection methods, 
data stream, model evaluation metrics, and performance 
of models from the 122 studies. All extracted data was 
reviewed by a second author (RGW).

Study characteristics
The extraction of study characteristics included details 
on the sample population, including sample size, gender 
distribution (number of female participants), and age 
(mean, standard deviation, and range). There were stud-
ies in this review that used freely available dataset(s) for 
their sample (n = 27), with several studies compiling data 
from more than one dataset (n = 8). Studies that used 
publicly available datasets for their sample are presented 
with a superscript letter in Table 1. Each superscript let-
ter refers to a specific database, with several repeating 

databases used across studies, as depicted in Table 1. For 
studies using more than one dataset for their sample, 
sample sizes of the datasets were pooled, and number of 
female participants (gender distribution) were pooled. 
Additionally, for studies that used more than one dataset, 
we compiled the age ranges into one comprehensive age 
range across all included datasets. Device brand (iOS or 
Android) and outcome predicted (identity, age, or gen-
der) were also extracted from the studies. The protocol of 
each study included was evaluated to determine whether 
it was a free-living or in-lab protocol. We defined in-lab 
protocols as those completed in a researcher-supervised 
controlled setting, while free-living refers to protocols in 
which participants use the device in their typical envi-
ronment (e.g., home, work). Furthermore, we extracted 
whether the protocol was structured or free-use. We 
defined structured protocols as those in which the 
researchers give the participant a specific task to com-
plete on the device, such as a questionnaire, a game, or 
using a particular application. Free-use protocols refer to 
protocols in which the participant can interact with the 

Fig. 1  PRISMA flowchart
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Table 1  Characteristics of included studies

Study Details Sample population Authentication Study setting

First author, year Citation Sample size Female (n) Age range Device brand Outcome predicted Free-living vs. 
in-lab

Structured vs. 
free-use

Davis, 2020 [36] 48 21  < 40, > 40* iOS Sex, age In-lab Structured

Sun, 2016 [37] 19 8 18–35 Android ID In-lab Structured

Liu, 2016 [38] 20 10 NR Android ID In-lab Structured

Maghsoudi, 2016 [39] 60 NR NR Android ID In-lab Structured

Putri, 2016 [40] 29 NR NR Android ID In-lab Structured

Lamiche, 2019 [41] 20 10 22–33 Android ID In-lab Structured

Smith-Creasey, 2016 [42] 50 NR NR iOS ID In-lab Free-use

Shih, 2015 [43] 10 4 22–30 Android ID In-lab Structured

Zaidi, 2022a,b,c,d [44] 350 NR NR Android ID In-lab Structured

Soni, 2018 [45] 10 NR NR Android ID In-lab Structured

Lin, 2012 [46] 20 4 18–40 Android ID In-lab Structured

Li 2018 [47] 304 NR NR NR ID Free-living Free-use

Smith-Creasey, 2019e,f,g [48] 49 NR NR Android ID Free-living Free-use

Salem, 2019 [49] 7 NR NR Android ID In-lab Structured

Zhao, 2020 [50] 110 NR NR iOS ID In-lab Structured

Qiao, 2015 [51] 10 NR NR Android ID In-lab Structured

Smith-Creasey, 2019 [52] 20 NR NR Android ID In-lab Structured

Alariki, 2016 [53] 18 NR 20–40 Android ID In-lab Structured

Lee, 2017 [54] 12 NR NR Android ID In-lab Structured

Li, 2020h [55] 150 58 16–50 Android ID In-lab Structured

Saini, 2020 [56] 40 NR NR NR ID In-lab Free use

Takahashi, 2016 [57] 20 4 NR Android ID In-lab Structured

Deb, 2019 [58] 37 16 18–56 Android ID Free-living Free-use

Leingang, 2018i [59] 100 NR NR NR ID In-lab Structured

Acien, 2019j [60] 119 NR 3–6, < 25* Android ID In-lab Structured

Mahbub, 2016 [61] 48 NR NR Android ID Free-living Free-use

Guarino, 2022 [62] 147 52 7–59 Android Gender In-lab Structured

Wang, 2019a [63] 21 NR 20–30 Android ID In-lab Structured

Davarci, 2017 [64] 200 NR 3–11, 12–50 Android Age In-lab Structured

Chakraborty, 2019k,l,m [65] 60 NR 19–48 Android ID In-lab Structured

Antal, 2015 [66] 42 18 20–46 Android ID In-lab Structured

Roy, 2014a [67] 41 13 10–69 Android ID In-lab Structured

Salem, 2016 [68] 5 NR NR Android ID In-lab Structured

Roy, 2019a [69] 746 476 NR Android ID In-lab Structured

Lee, 2021 [70] 6 NR NR NR Handedness In-lab Structured

Buriro, 2019 [71] 85 30 20–60 Android ID Free-living Structured

Praher, 2016 [72] 8 NR 23–55 Android ID In-lab Structured

Baran, 2019n [73] 12 NR NR NR ID In-lab Structured

Ali, 2016 [74] 6 3 NR NR ID In-lab Structured

Guerra-Casanova, 2012o,p [75] 125 NR NR NR ID In-lab Structured

Primo, 2017 [76] 27 NR  < 27* Android ID In-lab Structured

Yang, 2019 [77] 45 19 10–55 Android ID NR NR

Wolff, 2013 [78] 6 NR NR NR ID Free-living Free-use

Tse, 2019 [79] 31 NR NR NR ID In-lab Structured

Antal, 2015q,r,s [80] 120 54 20–49 Android ID In-lab Structured

Laghari, 2016 [81] 10 NR NR Android ID In-lab Structured

Tolosana, 2019 [82] 93 31 17–27* Android ID In-lab Structured

Ray, 2021 [83] 49 23 18–35 +  Android ID In-lab Structured

Ambol, 2020 [84] 5 NR NR NR ID In-lab Structured

Garbuz, 2019 [85] 36 NR NR NR ID In-lab Structured

Dybczak, 2022 [86] 5 NR NR Android ID In-lab Structured

Mumuria, 2015 [87] 73 NR NR Android ID In-lab Free-use

Karanikiotis, 2020 [88] 2221 NR NR NR ID In-lab Structured
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Table 1  (continued)

Study Details Sample population Authentication Study setting

First author, year Citation Sample size Female (n) Age range Device brand Outcome predicted Free-living vs. 
in-lab

Structured vs. 
free-use

Zhao, 2013 [89] 30 NR NR Android ID In-lab Structured

Zhao, 2017 [90] 23 9 NR Android ID Free-living Free-use

Leyfer, 2019 [91] 14 NR NR Android ID Free-living Free-use

Herath, 2022 [92] 3 NR NR NR ID NR NR

Kumar, 2017 [93] 57 NR NR Android ID In-lab Free-use

Barlas, 2020 [94] 30 11 NR Android ID NR NR

Incel, 2021 [95] 45 NR 18–42 Android ID In-lab Structured

Hernandez-Ortega, 2017j [96] 119 62 Children: 3–6, 
adults: < 25*

Android ID In-lab Structured

Nguyen, 2017 [97] 20 6 20–30 Android ID In-lab Structured

Al-Showarah, 2019 [98] 42 NR Elderly: 60 + , 
younger: 
20–39

Android Age group In-lab Structured

Ng’ang’a, 2020 [99] 12 6 6 < 35, 6 < 35 NR ID In-lab Structured

Ray-Dowling, 2022i [100] 100 NR NR Android ID In-lab Structured

Buriro, 2017 [101] 95 20 20–60 Android ID In-lab Structured

Ouadjer, 2021a [102] 41 13 10–69 Android ID Free-living Free-use

Suharsono, 2020 [103] 50 NR 18–40 Android ID In-lab Structured

Barra, 2018 [104] 38 NR NR Android ID In-lab Structured

Mallet, 2022i,t [105] 102 NR NR NR ID In-lab Structured

Abate, 2019 [106] 100 NR NR Android ID In-lab Structured

Cheng, 2020 [107] 100 41 Children: 
3–17, adults: 
18–59

Android Age In-lab Structured

Alqarni, 2020 [108] 26 12 NR Android ID In-lab Structured

Rao, 2013 [109] 5 NR NR NR ID In-lab Structured

Coakley, 2016 [110] 52 NR NR Android ID In-lab Structured

Gautam, 2017 [111] 7 NR NR Android ID NR NR

Deng, 2015u [112] 55 NR NR Android ID In-lab Structured

Roh, 2016 [113]  > 15* NR NR Android ID In-lab Structured

Acien, 2019v [114] 48 12 22–31 NR ID Free-living Free-use

Sun, 2021 [115] 26 17 30–63 NR ID Free-living Free-use

Peralta, 2013 [116] 8 4 24–33 NR ID In-lab Structured

Stragapede, 2022w [117] 600 197  < 20–50 NR ID Free-living Structured

Liang, 2020 [118] 20 12 10– > 59 Android ID Free-living Free-use

Li, 2021 [119] 19 NR NR NR ID In-lab Structured

Corpus, 2016 [120] 30 NR NR NR ID In-lab Structured

Akhtar, 2017 [121] 150 NR NR Android ID Free-living Structured

Song, 2017 [122] 161 26 18–55 Android ID In-lab Structured

Primo, 2015 [123] 34 NR  < 25* Android ID In-lab Structured

Phillips, 2016 [124] 4 NR NR iOS ID In-lab Structured

Li, 2016 [125] 42 NR NR Android ID In-lab Structured

Haberfield, 2021 [126] 33 5 19–69 Android ID In-lab Structured

Tharwat, 2019 [127] 51 25 NR NR ID In-lab Structured

Tang, 2022 [128] 10 NR 20–25 NR ID In-lab Structured

Mahfouz, 2017 [129] 52 NR NR Android ID In-lab Structured

Hernandez-Ortega, 2017j [130] 119 62 Children: 3–6, 
adults: < 25

Android Age In-lab Structured

Miguel-Hurtado, 2016x [131] 116 59 18–35 Android Sex In-lab Structured

Wang, 2020i,v [132] 100 NR 20–30 NR ID NR NR

Inguanez, 2016 [133] 32 10 NR Android ID In-lab Structured

Zhu, 2017 [134] 20 5 18–43 Android ID Free-living Structured

Cheng, 2013 [135] 100 NR NR Android ID Free-living Free-use
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Table 1  (continued)

Study Details Sample population Authentication Study setting

First author, year Citation Sample size Female (n) Age range Device brand Outcome predicted Free-living vs. 
in-lab

Structured vs. 
free-use

Gunn, 2018i [136] 100 NR NR NR ID Free-living & in-lab Free-use and struc-
tured

Wang, 2021 [137] 11 NR NR Android ID In-lab Structured

Abate, 2016 [138] 100 NR NR Android ID In-lab Structured

Acien, 2020w [139] 600 197  < 20– > 50* Android ID In-lab Structured

Anusas-Amornkul, 2019 [140] 20 NR NR Android ID In-lab Structured

Temper, 2016 [141] 25 9 19–65 Android ID Free-living Structured

Roy, 2019 [142] 92 NR 7–65 Android Age, Gender In-lab Structured

Shrestha, 2016 [143] 20 3 25–35 Android ID In-lab Structured

Cascone, 2022y,z,2 [144] 243 148 7–65 Android Gender, Age In-lab Structured

Temper, 2015 [145] 22 NR 15–60 Android ID In-lab Structured

Frank, 2013 [146] 41 7 10–69 Android ID In-lab Structured

Wantanabe, 2013 [147] 5 NR NR iOS ID In-lab Structured

Volaka, 2019i [148] 100 NR NR Android ID In-lab Structured

Brown, 2020 [149] 1 NR NR Android ID In-lab Structured

Sharma, 2017 [150] 42 NR NR Android ID In-lab Free-use

Kroeze, 2016 [151] 30 NR NR Android ID In-lab Free-use

Filippov, 2018 [152] 21 NR NR NR ID In-lab Free-use

Karakaya, 2019i [153] 100 NR NR NR ID In-lab Structured

Serwadda, 2013 [154] 190 NR NR Android ID In-lab Structured

Buriro, 2016 [155] 30 8 NR Android ID In-lab NR

Shen, 2016 [156] 48 19 18–50 Android ID In-lab Structured

Stylios, 2022 [157] 39 NR NR Android ID In-lab Structured

NR not reported
a Frank dataset
b Serwadda dataset
c Antal dataset
d Mabhub dataset
e SHR dataset
f MSC dataset
g GCU dataset
h Article encompassed two studies
i H-MOG dataset
j Vatavu dataset
k UCAI-HAR dataset
l UT-Data-Complex dataset
m shoiab dataset
n gesture dataset
o GBS2GestureDB1database
p GB2SGestureDB2 database
q Dataset_11f
r Dataset_8f
s Dataset_3f
t BioIdent dataset
u Stanford TapDynamics dataset
v UMDAA-02 dataset
w HuMIdb dataset
x SSD dataset
y RHU dataset
z KDAp dataset
* Study did not provide further details on age range
2 TDAS dataset
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device in their normal manner and select which applica-
tions they use, with no restrictions from the researchers.

Methods
Extraction of study characteristics also included identify-
ing the biometric method(s) employed for authentication 
of the user and/or detection of demographic character-
istics. We first recorded the biometric method described 
by each study in the precise language used by the authors. 
Given the lack of standardized terminology in the field of 
biometric authentication, these methods needed to be 
condensed into broader categories. The categories for 
biometric methods were consolidated into four catego-
ries, with agreement from all authors. These categories 
included movement (encompassing hand movement, arm 
gesture, hand gesture, and posture), behavior profiling, 
keystroke dynamics, and touch gestures.

Data stream
Extraction of study characteristics also included the iden-
tification of the specific data stream(s), or sensors, used 
for biometric authentication. We first recorded the data 
stream(s) used in each study using the precise language 
used by the authors. Similar to categorizing biometric 
methods, the categories for data streams also needed to 
be condensed to broader categories of similar charac-
teristics. These categories included accelerometer (grav-
ity, linear acceleration), orientation, gyroscope (rotation, 
angular velocity), touch, location, magnetometer, and 
other (ambient light, Bluetooth, temperature, proximity, 
application usage, power).

Model evaluation metrics
Extraction of study characteristics also included identi-
fying the model evaluation metric(s) used in each study. 
We first identified the evaluation metric described 
in each study using the precise language used by the 
authors. Metrics were condensed into broader catego-
ries given the lack of consistent terminology in machine 
learning model performance metrics. These categories 
included area under the curve (receiver operating charac-
teristic), equal error rate (EER), precision, recall (sensitiv-
ity, true acceptance rate, true positive rate), false rejection 
rate (FRR, false negative rate), false acceptance rate (FAR, 
false positive rate, “false alarm rate”), accuracy (correct 
recognition rate, mean recognition rate, success rate), F1 
score (F-measure), and other (kappa, root mean square 
error H-mean, detection error tradeoff curve, specificity/
true rejection rate, average match rate, mean square error 
rate, average number of impostor actions, and average 
number of genuine actions).

Quality assessment
The quality of the included studies was assessed using 
an adapted framework from Papi 2017 [158], which is 
a research quality scale specific to the field of engineer-
ing with a focus on sensor technology (Additional file 1: 
Supplementary Table  1). The primary author (OLF) 
assessed the study quality of all 122 studies. Each ques-
tion was scored as either 1, meeting the criteria, or 0, 
not meeting the criteria. Composite quality assessment 
scores were calculated by adding together the number of 
criteria met, with a score of 14 meaning that the study 
was of highest quality and a score of 0 meaning that the 
study was of lowest quality.

Data analysis
The characteristics of the included studies were tabu-
lated in Excel (Microsoft, Version 2304). We then com-
piled summary statistics in Excel to describe our findings. 
Means and standard deviations were calculated for sam-
ple size and gender distribution across all studies.

Results
Study characteristics
Across all 122 studies, sample sizes ranged from 1 to 
2221 participants, with an average of 89 participants per 
study (± 224.2). Android was the most common operat-
ing system, with 89 studies (73%) using Android devices 
for their protocol(s). The iOS operating system was used 
in 5 (4%) of protocols and the remaining 28 studies (23%) 
did not report the operating system used. Most of the 
studies (n = 112, 92%) identified the specific user of the 
device, while 5 (4%) studies aimed to detect the gender 
of the user and 7 studies (6%) aimed to detect the age/age 
group of the user. For the study setting, most study proto-
cols were conducted in a lab setting (n = 99, 81%), while 
fewer studies were carried out in a free-living environ-
ment (n = 17, 14%), one study used both lab and free-liv-
ing settings, and 5 studies (4%) did not provide sufficient 
information to determine study setting. Most proto-
cols were structured (n = 96, 79%), with specific guid-
ance and directions given to the participants on how to 
interact with the device (e.g., playing a game, watching a 
specific video). Few studies (n = 19, 16%) allowed partici-
pants to interact with the device in their normal manner, 
considered “free use” of the device, one study had both 
structured and free-use, and 6 studies (5%) did not pro-
vide sufficient information to determine protocol format. 
Many studies did not report demographic characteristics 
of the sample; 75 (61%) did not report gender, 70 (57%) 
did not report age, and none reported race/ethnicity. Of 
those that did report gender, on average, the distribution 
of female participants was 39% of the sample. Of the 122 
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studies, 75 studies (61%) did not report an age range, 34 
studies (28%) had a sample of adults, and 13 studies (11%) 
had age ranges that included children (< 18 years).

Methods
Of the 122 studies included in this review, 63 (52%) used 
movement (e.g., hand movement, hand or arm gesture 
and posture) as their biometric method for authentica-
tion. Thirty studies (25%) used keystroke dynamics for 
biometric authentication, while 76 studies (62%) used 
touch gestures. Behavior profiling, such as app usage, 
battery, and WiFi, was used in 7 studies (6%) for biomet-
ric authentication.

Data stream
Touch was the most extensively used data stream, with 
93 studies using touch behavior for biometric authenti-
cation. The accelerometer sensor was the second most 
frequently used sensor of this review, with n = 68 stud-
ies (56%). Other data streams employed include gyro-
scope (n = 46 studies, 38%), orientation (n = 9 studies, 
7%), location (n = 8 studies, 7%), and magnetometer 
(n = 22 studies, 18%). As depicted in Additional file 3: 
Supplementary Table  3, all other data streams that 
were used in less than 3 studies were combined into an 
“Other” category. These included ambient light (n = 3, 
2%), Bluetooth (n = 3, 2%), temperature (n = 1), prox-
imity (n = 3, 2%), application usage (n = 1), power/bat-
tery level (n = 2), motion quaternion (n = 1), directional 
heading (n = 1), and heat map (n = 1).

Model evaluation metrics
When evaluating the performance of their models, the 
included studies used a wide range of evaluation metrics. 
Equal error rate (EER) and accuracy were the most highly 
used evaluation metrics, with 57 studies (47%) using EER 
and 56 studies (46%) using accuracy. Following EER and 
accuracy, false rejection rate (FRR) (n = 42 studies, 34%) 
and false acceptance rate (FAR) (n = 47 studies, 39%) were 
also highly used to evaluate model performance. Area 
under the curve (AUC) and the receiver operating charac-
teristic curve (ROC) were used in 20 studies (16%). Recall/
sensitivity (n = 20, 16%), F1 score (n = 14, 11%), and pre-
cision (n = 10, 8%) were also frequently used among the 
included studies. As depicted in Additional file 3: Supple-
mentary Table  3, all other model evaluation metrics that 
were used in less than 4 studies were combined into an 
“Other” category. These included kappa (n = 2), root mean 
square error (RMSE) (n = 1), H-mean (n = 1), detection 
error tradeoff (DET) curve (n = 4, 3%), specificity/true 
rejection rate (n = 3), average match rate (n = 1), mean 
square error rate (n = 1), average number of impostor 

actions (ANIA) (n = 2), and average number of genuine 
actions (ANGIA/ANGA) (n = 2).

Quality of the included studies
The average quality score of the included studies was 
5.5 out of 14, with a high score of 11 and a low score of 
3. The most commonly met criteria were #11, report-
ing main outcomes, with 122 out of 122 studies meeting 
this criterion, and #1, clearly stating research objectives, 
with 121 out of 122 studies meeting this criterion. Most 
studies also met the criteria for #12, reporting the main 
findings (n = 119 studies), and for #13, clearly describ-
ing and justifying the statistical tests (n = 118 studies). 
The selection of sensors (#9) was appropriately justified 
in 65 studies, while data handling was clearly described 
(#10) in 35 studies. Only some studies met the criteria for 
#14, clearly describing the limitations (n = 33), or met the 
criteria for #8, clearly describing the equipment design 
(n = 23). Few studies of this review met the criteria for 
#3, adequately describing the study population (n = 19), 
as many did not report demographic characteristics such 
as age and gender. Only 8 out of the 122 studies met the 
criteria for #5, appropriately describing the sampling 
methodology, and only 7 out of the 122 studies met the 
criteria for #7, providing detailed methods that could be 
replicated. None of the included studies met the criteria 
for #4, specifying eligibility criteria, and for #6, providing 
a rationale for the sample size.

Discussion
Behavioral biometrics have the potential to improve 
screen time measurement because researchers can capi-
talize on built-in mobile device sensors to determine 
who is using the device at specific time points to address 
a critical limitation in child screen time research. This 
scoping review sought to summarize the current state 
of behavioral biometric authentication, including iden-
tifying the behavioral biometric methods used, the data 
streams used, the characteristics predicted, and the 
model evaluation metrics used. On a larger scale, this 
updated understanding of the methodology of behavio-
ral biometric studies can inform future research applying 
this technology to a public health context.

Overall, in the 122 included studies, the most highly 
used behavioral biometric methods were touch gestures 
and movement. The most highly used data streams for 
behavioral biometric authentication were touch and 
accelerometry. Motion sensors, such as accelerometer, 
gyroscope, and magnetometer, are straightforward 
to access and record with a sensor tracking applica-
tion (e.g., Sensor Log) on mobile devices. Using touch 
sensors presents more challenges, both in terms of 
accessing this sensor stream as well as the privacy and 



Page 10 of 17Finnegan et al. Systematic Reviews           (2024) 13:61 

security concerns of participants. Several of the stud-
ies using touch in this review used their own gaming 
application that only tracked touch behavior while the 
participant was using the application, which has limited 
applicability to screen time measurement, as it only 
records touch behavior during the use of one applica-
tion. In addition to challenges in accessing this sensor 
stream, there are privacy concerns, as research partici-
pants may not feel comfortable with sensor data from 
their devices being collected continuously. While col-
lecting motion behavior may not be as much of a con-
cern, there may be a particular concern in tracking 
touch sensor data when using banking applications or 
typing passwords (e.g., concerns in researchers deci-
phering passwords). Therefore, while touch is a highly 
used behavioral biometric method, it may have more 
limited applicability to screen time measurement when 
compared to motion sensors (e.g., accelerometer, gyro-
scope, magnetometer).

Most behavioral biometric authentication studies in 
this review aimed to identify the user of the device, with 
fewer studies aiming to detect demographic characteris-
tics, such as age and gender. Studies that used behavioral 
biometrics to detect age were designed to tailor technol-
ogy interfaces towards children (e.g., widget layout) and 
to improve parental control options. Similarly, in studies 
examining the ability of behavioral biometrics to deter-
mine gender, their objective was to adapt interfaces 
to be more relevant for the user. Based on current evi-
dence, behavioral biometrics are less accurate at detect-
ing demographic characteristics compared to detecting a 
unique user [159]. It is likely more challenging to identify 
similar characteristics in user behavior across a group 
of individuals, as user interaction can vary substantially 
on an inter-individual level [60, 159]. Relative to applied 
screen time measurement in a public health context, 
detecting the age of the user may be a relevant finding to 
distinguish between the parent and the child when they 
are sharing the device. However, the ability to detect only 
the age of a user would not be as useful when a child 
shares a device with a sibling of a similar age. Thus, deter-
mining the unique identity of a user of the device rather 
than demographic characteristics would be more rele-
vant for research purposes.

Furthermore, of the included studies, a majority of 
studies used samples of adult participants, with fewer 
studies tested on samples of children. The lack of research 
on children highlights a gap in the literature, as there are 
inherent behavioral differences in the ways in which chil-
dren interact with mobile devices compared to adults 
[159] (e.g., children are more active), and findings from 
adult studies cannot be universally applied to children. 
Therefore, we need additional research on biometrics 

among children before applying this technology to meas-
ure children’s screen time.

The most popular model evaluation metrics used in 
the included studies were equal error rate (EER), accu-
racy, false acceptance rate (FAR), and false rejection rate 
(FRR). There were a wide range of model evaluation met-
rics used across studies, with several reporting the same 
metric under different terms. For example, several stud-
ies used the term “Correct Recognition Rate,” instead of 
accuracy and “False Positive Rate” instead of false accept-
ance rate. This highlights a lack of standardization in ter-
minology that is consistent across the field of behavioral 
biometric authentication, which limits our ability to com-
pare findings across studies.

Of the studies included in this review, the average study 
quality was low (5.5/14), highlighting the lack of proper 
reporting in many of the studies in the field of behavio-
ral biometric authentication. Overall, most authors did 
not provide sufficient information on equipment design, 
study population, sampling methodology, and eligibility 
criteria. Very few authors provided adequate justifica-
tion for their sample size. The insufficiency in reporting 
key elements of study design limits the ability to replicate 
these findings in other samples and contexts. Further-
more, the lack of standardization in the terminology used 
across studies hampers the ability to make larger conclu-
sions on the efficacy of behavioral biometrics and their 
application in the measurement of children’s screen time.

Behavioral biometric tools and innovative directions 
for future research
Though the purpose of this review is to examine the cur-
rent scope of literature on behavioral biometrics through 
the lens of its application to public health (i.e., screen time 
measurement), it is necessary to also distinguish this from 
the domain of behavioral biometrics research for security. 
Given the vast amount of sensitive information stored on 
mobile devices, secure user authentication has become 
a prominent concern and a highly studied concept over 
recent years [22, 160, 161]. User authentication has shifted 
from “what you know,” such as an ID, PIN, or password, to 
“what you are,” or biometric authentication, with behavio-
ral biometrics referring to the specific user-device interac-
tion. A specific framework developed by Bo and colleagues 
in 2013, SilentSense, provides a touch-based biometrics 
model that leverages touch events from the system API 
[162, 163]. This tool additionally integrated movement 
into its scheme, presenting a multi-modal authentication 
method. Another more recent development in behavioral 
biometrics is the generation of behavioral biometric data-
sets using engaging tools [164, 165]. There have been chal-
lenges in collecting biometric data on participants due to 
the long protocols necessary to capture sufficient amount 
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of data [164]. Therefore, researchers have developed gam-
ing applications that collect a variety of behavioral bio-
metric data (e.g., keystroke dynamics, touch gestures, 
motion) [164, 165]. BrainRun, developed by Papamichail 
and colleagues, is a cognitive skills gaming application 
that collects touch data. BioGames, developed by Stylios 
and colleagues, is also a gaming application that collects 
touch, motion, and keystroke data [164]. These applica-
tions are important tools in the feasible generation of 
large-scale behavioral biometric data. Lastly, a challenge 
within behavioral biometrics research is the power usage 
concerns on mobile devices, particularly for continuous 
authentication methods. In future behavioral biometrics 
research, power consumption of individual applications 
should be monitored to ensure that the authentication 
application is not substantially impacting the device bat-
tery. Power consumption of individual applications can 
be monitored using a method from Murmuria and col-
leagues that uses per-subsystem time shares from the 
operating system, which can provide clarity on the feasibil-
ity of deploying behavioral biometric methods in a larger 
research context [166].

Advantages and disadvantages of the behavioral biometric 
methods
As these behavioral biometric methods have been highly 
studied and applied for use within the field of cyberse-
curity, this work has highlighted some of the advantages 
and disadvantages associated with each of these methods. 
While all methods are subject to privacy concerns [30], 
behavior profiling in particular has been scrutinized for 
its reliance on sensitive and private data (e.g., calls, texts, 
location). However, an advantage of behavior profiling is 
that unlike other methods (e.g., keystroke dynamics), it 
does not require the user to perform a specific activity for 
authentication [25]. A disadvantage of keystroke dynam-
ics is that its accuracy for user authentication can be 
impacted by factors including injury, psychological state 
(e.g., stress), and distraction [167]. Additionally, the way 
in which an individual types on a keyboard is considered 
less permanent than other traits, such as physiological 
biometrics (e.g., facial and fingerprint recognition) [167]. 
However, relative to other authentication methods, key-
stroke dynamics is relatively low cost and does not rely 
on external hardware. Additionally, the way in which an 
individual types is challenging to replicate; therefore, 
this method can detect impostors more effectively [167]. 
An advantage of touch dynamics authentication is that 
the user does not need to complete a specific task for 
authentication; rather, this method works continuously in 
the background [20]. However, a disadvantage could be 
identifying the most salient features for user authentica-
tion, as using a large number of touch features increases 

data size and subsequently can slow down authentica-
tion speed [23]. Lastly, motion authentication can be 
impacted by behavioral variability, as this type of authen-
tication is reliant on the user to interact with the device 
similarly over time [168]. However, similar to other 
methods, motion authentication can be an unobtrusive 
authentication method [168], and there may be less pri-
vacy concerns compared to touch-based authentication.

Methodological considerations and implications for future 
research
Subsequent research should examine the effectiveness of 
behavioral biometrics to determine the user of the device 
among children across development. Most of the stud-
ies included in this review exclusively used adult sam-
ples, which has limited applicability to child screen time 
research. The present review also highlighted the lack 
of studies being done on iOS devices (iPhone, iPad) in 
the field of behavioral biometrics. This is a limitation of 
the field because iOS use is highly prevalent, as 55% of 
tablets in the USA are iPads [169]. In 2022, over 50% of 
smartphone owners in the USA used an iPhone, surpass-
ing Android for the first time in history [170]. A majority 
of the studies (n = 85) tested Android devices, with only 
5 studies using an iOS operating system, warranting fur-
ther testing on a diversity of devices, including both iOS 
and Android.

When applying this technology to objective screen time 
measurement, participants may be apprehensive about 
researchers tracking mobile device usage data. However, 
there are practices in place to reduce concerns with track-
ing technology. Specifically with the passive-sensing appli-
cation Chronicle, data are not associated with IP addresses 
or phone numbers and only indicate the type of applica-
tion used (e.g., educational, social media), not the infor-
mation on websites visited or the content of messages and 
emails. Parents are comfortable with using passive sens-
ing technology when participating in a research study, 
as indicated by a feasibility study reporting no dropouts 
due to privacy concerns in using this technology [171]. 
While passive sensing applications have been shown to be 
accepted for use by families, future research can examine 
the extent to which families are comfortable with sensor 
tracking technology (e.g., accelerometer, gyroscope, touch) 
continuously monitoring user behavior on shared mobile 
devices. Prior to employing this technology in screen time 
measurement on a large scale, a necessary first step is to 
determine the feasibility and acceptability of this technol-
ogy for families participating in research.

Additionally, research using this technology to meas-
ure screen time should consider the storage and bat-
tery life concerns inherent to using mobile device usage 
data. The computational burden of running applications 
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to track sensor data may impact the feasibility of longi-
tudinally monitoring screen time behavior in children 
[30]. Selecting the appropriate sensor tracking appli-
cation and sampling frequency to use, as well as only 
recording sensor data when the device is unlocked 
must be a priority for researchers using behavioral bio-
metric technology for screen time research [159].

Lastly, within the field of behavioral biometric authen-
tication, there is a necessity to standardize the termi-
nology used to describe various elements of behavioral 
biometrics. The lack of uniform language needs to be 
addressed to apply this technology on a larger scale. 
A way in which the field of behavioral biometrics can 
move towards more cohesive language is by adopting 
best-practice guidelines for reporting performance met-
rics, similar to the fields of physical activity measure-
ment [172] and sleep measurement [173].

The present review has several strengths, including a 
comprehensive review of the current state of behavio-
ral biometric authentication. This provided an updated 
evaluation of the most highly used behavioral biometric 
methods, data streams, and model evaluation metrics. 
The current review is limited by the low quality of the 
included studies and the lack of consistency in the termi-
nology used across studies. Given the lack of standardiza-
tion in model evaluation metrics, we were unable to sum 
results across studies and use meta-analytic methods to 
evaluate the overall efficacy of behavioral biometrics in 
identifying the user of a device. Furthermore, a limitation 
of the current review is the narrow focus on behavioral 
biometrics (touch, accelerometry, behavioral profiling) 
and not including studies on physiological biometrics. 
While physiological biometrics presents an important 
tool in authentication, these sensors (e.g., camera, video) 
are not freely available and feasible to use in public health 
research. Despite these limitations, behavioral biomet-
ric technology highlights a window of opportunity, as it 
shows the initial potential to harness sensor data to iden-
tify the user of a device. This review can inform future 
research applying behavioral biometric technology to 
contexts outside of cybersecurity and to address the limi-
tations of objective measures of screen time.
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