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Abstract 

Background Ascertainment of heart failure (HF) hospitalizations in cardiovascular trials is costly and complex, involv‑
ing processes that could be streamlined by using routinely collected healthcare data (RCD). The utility of coded RCD 
for HF outcome ascertainment in randomized trials requires assessment. We systematically reviewed studies assess‑
ing RCD‑based HF outcome ascertainment against “gold standard” (GS) methods to study the feasibility of using such 
methods in clinical trials.

Methods Studies assessing International Classification of Disease (ICD) coded RCD‑based HF outcome ascertainment 
against GS methods and reporting at least one agreement statistic were identified by searching MEDLINE and Embase 
from inception to May 2021. Data on study characteristics, details of RCD and GS data sources and definitions, and test 
statistics were reviewed. Summary sensitivities and specificities for studies ascertaining acute and prevalent HF were 
estimated using a bivariate random effects meta‑analysis. Heterogeneity was evaluated using I2 statistics and hierar‑
chical summary receiver operating characteristic (HSROC) curves.

Results A total of 58 studies of 48,643 GS‑adjudicated HF events were included in this review. Strategies used 
to improve case identification included the use of broader coding definitions, combining multiple data sources, 
and using machine learning algorithms to search free text data, but these methods were not always successful 
and at times reduced specificity in individual studies. Meta‑analysis of 17 acute HF studies showed that RCD algo‑
rithms have high specificity (96.2%, 95% confidence interval [CI] 91.5–98.3), but lacked sensitivity (63.5%, 95% CI 
51.3–74.1) with similar results for 21 prevalent HF studies. There was considerable heterogeneity between studies.

Conclusions RCD can correctly identify HF outcomes but may miss approximately one‑third of events. Methods 
used to improve case identification should also focus on minimizing false positives.
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Introduction
Heart failure (HF) is an important cause of morbidity 
and mortality in the general population affecting 1–3% 
of adults, with over 64 million people estimated to be 
affected worldwide [1–3]. It is a significant burden on 
healthcare systems, accounting for about 2% of all health-
care expenditure in countries across Europe and the USA 
[1, 2]. Therefore, HF is an important target for treatment, 
requiring large randomized, controlled trials to assess 
potential interventions. Such large trials can be com-
plex and costly [4, 5]. Ascertainment of HF admissions 
in a clinical trial often requires clinic visits (with or with-
out manual medical records review) to identify poten-
tial events, gathering clinical documents for reported 
events, and independent clinical adjudication to con-
firm or refute events. This process could be streamlined 
to reduce the complexity and overall cost of trials [6–8]. 
Routinely collected healthcare data (RCD) may help 
to achieve this goal by supporting the ascertainment of 
HF outcomes during within-trial periods, and post-trial 
assessments of the impact on longer-term HF risk [9].

RCD is defined as “healthcare data collected for pur-
poses other than research or without specific a priori 
research questions developed before collection” [10]. 
When patients are diagnosed with HF during a health-
care encounter, this diagnosis, along with other data 
relating to the encounter, are recorded in RCD, usually 
in the form of coded diagnoses. The most common RCD 
source is hospital administrative claims data (ACD), an 
umbrella term for data generated as part of the financial 
administration of hospitals [11, 12]. Other RCD sources 
include patient or disease registries and epidemiologi-
cal surveys (detailed definitions of RCD sources used are 
provided in Additional file  1: Supplemental Methods). 
RCD can be used to ascertain events by searching the 
data for specific codes or coding algorithms.

Ascertaining hospitalizations for HF from such sources 
can be problematic as HF is a chronic disease with epi-
sodes of decompensation requiring admission, and com-
monly used coding systems do not distinguish between 
acute events and prevalent chronic disease.

A meta-analysis published in 2014 of 11 studies report-
ing sensitivity and specificity of coded administrative 
data for ascertaining HF, showed that pooled sensitivity 
was 75% (95% confidence interval [CI] 74.7–75.9) and 
pooled specificity was 97% (95% CI 96.8–96.9) [13]. 
These findings mirrored two previous reviews [14, 15]. 
However, there was a limited number of studies in this 
review, and some studies had very small numbers of 
HF events. It is also possible that coding practices have 
improved over the last decade. A systematic review from 
2020, focused entirely on Europe and including 20 stud-
ies using electronic health records and primary care 

data, reported sensitivities ≤ 66% and specificities ≥ 95% 
in most of the studies [16]. However, it excluded other 
data sources such as claims databases and registries and 
was geographically restricted. We have systematically 
reviewed all studies that assessed the utility of RCD for 
HF outcome ascertainment to summarise the currently 
available evidence supporting their use in cardiovascular 
outcomes trials.

Methods
This review follows the PRISMA (Preferred Reporting for 
Systematic Reviews and Meta-Analyses) guidelines for 
conducting and reporting a systematic review [17].

Search strategy
A search was conducted of all available peer-reviewed 
literature on MEDLINE and Embase, from their incep-
tion (1946 and 1974 respectively), until May 2021 using 
the Ovid search engine. The initial search strategy was 
broad and aimed to include any studies where RCD was 
used to ascertain HF. No limits were set for the initial 
search. Multiple search terms, including different phras-
ings or synonyms of the same term were used (see Sys-
tematic Review Protocol in the Supplementary Appendix 
for search strategy and inclusion criteria). After removing 
duplicates, the titles and abstracts of potentially eligible 
articles were reviewed and those meeting the inclusion 
criteria underwent full-text review. The references of the 
full-text papers were hand-searched for additional rel-
evant articles.

Inclusion and exclusion criteria
To be included in the review, a study was required to 
assess the utility of coded RCD for ascertainment of HF 
against gold standard (GS) ascertainment criteria. We 
selected full-length, peer-reviewed articles published 
in English that used RCD to ascertain HF events and 
reported at least one agreement statistic, or sufficient 
data to allow its calculation, for International Classifica-
tion of Disease (ICD) code-based definitions of HF. All 
studies included must have defined a GS against which to 
assess the RCD-based ascertainment method and include 
at least 50 HF events identified using the GS method rel-
evant to that study. The GS method is defined as the ref-
erence standard against which each study assessed their 
RCD-based outcome ascertainment method. Examples 
include medical records review using pre-specified cri-
teria. Articles were excluded if they used free-text elec-
tronic medical records (i.e., narrative clinical notes) 
as the sole RCD source as these would be considered 
medical records and are often used as the GS for event 
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adjudication (see Systematic Review Protocol in Supple-
mentary Appendix for detailed exclusion criteria).

Data extraction
The full-text articles were reviewed by the first author 
(MAG) who abstracted the data into a data collec-
tion form. The author extracted study characteristics, 
details of the data sources (RCD and GS), type of hospi-
tal encounter (e.g., inpatient, outpatient, or emergency 
department attendances), and data definitions used, 
along with agreement statistics for the ICD code or cod-
ing algorithm used to ascertain HF. The agreement sta-
tistics extracted included sensitivity, specificity, positive 
predictive value (PPV), negative predictive value (NPV), 
and kappa scores. Where agreement statistics were una-
vailable, raw data was extracted for calculation where 
possible. Most routine databases list the main reason for 
hospitalization (most responsible diagnosis) in a primary 
position and secondary complications or pre-existing 
comorbidities in secondary positions. As the distinc-
tion between these categories is likely to be important in 
ascertaining incident episodes of heart failure (e.g., hos-
pitalization due to HF decompensation) as potential trial 
outcomes, the coding positions and agreement statistics 
according to coding position were also abstracted where 
available. If a study used more than one RCD definition 
or algorithm, the algorithm with the best agreement sta-
tistics was used for the main analysis.

Studies were categorized according to which types of 
RCD-based and GS HF events were included. Studies 
that only included hospitalizations for decompensated 
HF, irrespective of a prior HF diagnosis, were catego-
rized as acute HF studies. These studies were the main 
focus of the analysis as such methods could be used to 
collect follow-up information in a clinical trial. Studies 
that included all individuals with HF recorded over the 
study period (new and pre-existing HF) were categorized 
as prevalent HF studies. Such methods could be used to 
identify potential participants for inclusion in clinical 
trials. Studies that defined HF as a comorbid disease in 
individuals admitted with another main diagnosis such as 
myocardial infarction were also included in the prevalent 
HF category.

If a study assessed both acute and prevalent HF, or dif-
ferent ICD versions, or more than one coding position 
separately, the agreement statistics were extracted for 
all relevant event types or RCD algorithms for subgroup 
analysis. The first author conducted a second review of 
the abstracted data comparing them against the original 
abstract to correct any discrepancies in the data collec-
tion form. Any uncertainties were resolved through dis-
cussion with two senior clinicians (MMM and RJH).

Study quality assessment
A quality assessment of the included studies was under-
taken using the revised tool for Quality Assessment of 
Diagnostic Accuracy Studies  (QUADAS-2) [18]. Three 
authors (WK, ME, and AEM) independently reviewed the 
studies and extracted data using the QUADAS-2 template, 
and the first author reviewed and collated the final quality 
assessment. Studies were classified as having a low, high, or 
unclear risk of bias for 4 domains (patient selection, index 
test, reference standard, and flow and timing) and the first 
3 domains were also assessed for applicability to the review 
question (see Supplemental Methods in Additional file  1 
for details). Studies were considered to have a “low risk” of 
bias or “low concern” regarding applicability if all domains 
were low risk. If one or more domains had unclear or high 
risk the study was considered to be “at risk” of bias or have 
“some concerns” regarding applicability. A sensitivity anal-
ysis excluding studies at risk of bias was undertaken.

Statistical analysis
Studies were grouped according to whether they assessed 
acute or prevalent HF. Other potential sources of hetero-
geneity included coding system, position and definitions 
used, RCD and GS data source, study size, publication date, 
and country or region (e.g., Europe). All agreement statis-
tics (sensitivity, specificity, PPV or NPV) and 95% CI (exact 
binomial CI) were calculated using available data (see 
Additional file 1: Figure S1 for an example 2 × 2 table) [19]. 
Summary sensitivity, specificity, and a summary receiver 
operating characteristic (SROC) plot with a summary 
curve (using the hierarchical SROC model) were obtained 
using the Stata command metandi [20]. As these are ran-
dom effects models that may give undue weight to smaller 
studies, an additional sensitivity analysis was undertaken 
limited to studies with > 200 GS events.

The I2 statistic was used to assess heterogeneity between 
the sensitivity and specificity estimates in addition to visual 
inspection of the HSROC curves [21]. All analyses were 
performed using Stata version 17.

Formal testing for publication bias was undertaken by a 
regression of the log diagnostic odds ratio against 1/√effec-
tive sample size (ESS), weighted by ESS, with a P < 0.05 for 
the slope coefficient indicating significant asymmetry [22] 
(see Additional file  1, Supplemental Methods, Statistical 
Methods and Interpretation for details).

Results
Qualitative synthesis
Study selection
The initial Embase and MEDLINE searches yielded 
2790 articles in total and an additional 56 records were 
identified through a manual search of references dur-
ing full-text review. After the removal of duplicates and 
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non-English language articles and abstract review, 129 
articles were selected for full-text review. Of these, 71 
were excluded and 58 articles were included in the final 
synthesis (Fig. 1).

Study characteristics
The 58 studies included 48,643 GS HF events in total. 34 
studies (including 30,458 GS HF events) assessed acute 
HF outcomes [23–57], 21 studies (including 5210 HF 
events) assessed prevalent HF [12, 49, 58–76] while three 
studies (with 12,975 HF events) assessed both [77–79]. 
The majority of the studies (59%) were conducted in the 
USA and Canada. Additional file 1: Table S1 and Table S2 
summarize the characteristics of the 58 studies.

Study quality assessment
The overall risk of bias was low for 28 (48%) studies 
(Additional file 1: Table S3). Of the remaining 30 studies, 
7 had at least one high-risk domain and 23 had one or 
more domains with unclear risk of bias. Of 7 studies with 
high-risk domains, 6 had a reference standard at risk of 
not correctly classifying the target condition [28, 57, 68, 

70, 71, 79] while, in one study, patients were inappropri-
ately excluded from the analysis as they did not receive 
the reference standard [57]. Concerns regarding applica-
bility were low for 42 studies (72%). Fourteen of the 16 
studies with “some concern” regarding applicability were 
also considered “at risk” for overall risk of bias, with con-
cerns about the reference standard being the most com-
mon issue in both areas.

Gold standard data sources and definition
Forty-nine (85%) studies used hospital medical records 
as the GS data source (Additional file  1: Table  S4 sum-
marizes the sources of routine and GS data). The remain-
ing studies used primary care records (2 studies) [49, 76], 
and specialty databases or registries containing coded 
clinical data (5 studies) [12, 24, 35, 42, 57]. One study 
assessed outcomes against participant self-report [71], 
and another study conducted prospective medical assess-
ments and echocardiography [37].

Most studies (85%) undertook a further adjudication 
step of the GS source data conducting clinical adjudica-
tion of the medical records according to study defined 

Fig. 1 Preferred Reporting Items for Systematic Reviews and Meta‑Analyses (PRISMA) flowchart summarising the study selection process. Legend: 
EMR indicates electronic medical records; GS, gold standard; HF, heart failure; n, number of records and RCD, routinely collected healthcare data
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or guideline criteria. Three studies used the recoding of 
medical records by professional coders as the GS source  
[28, 68, 79] while the remaining six studies did not under-
take any adjudication (Additional file 1: Table S5 summa-
rizes the GS ascertainment methods used, and Table S6 
the main guideline criteria used for GS adjudication).

Routine data sources and definition
Forty-two (72%) studies relied solely on admitted 
care or inpatient data sources, whilst 15 (26%) stud-
ies also used outpatient or emergency department 
data [23, 30, 40–42, 45, 49–51, 53, 54, 59, 71, 76, 
77]. One (2%) study only used outpatient data [67]. 
Additional file 1: Table S4 summarises the main rou-
tine data sources. 42 studies (72%) used HDD as the 
main RCD source. Only three (5%) studies included 
prescribing data [39, 57, 71], while two (3.5%) stud-
ies included laboratory data [23, 50] 50 (86%) studies 
used only one RCD source, whilst eight (14%) studies 
used a combination of two or more sources [23, 39, 
50, 57, 71–73, 76]. Two (3%) studies combined coded 
HDD with machine learning algorithms and keyword 
searches to ascertain HF events from free text HDD, 
electronic medical records, and discharge summaries 
[72, 73].

All the studies identified used data coded in one of 
three revisions of the ICD coding system (ICD-8, -9, or 
-10) with some studies using more than one. 32 (55%) 
studies used ICD-9 codes only, 16 (28%) studies used 
ICD-10 codes only and one (2%) used ICD-8 codes only 
[28]. Nine (16%) studies used a combination of revisions 
[25, 34, 39, 48, 50, 53, 65, 70, 76].

The coding algorithms used varied considerably 
between studies. Four (7%) studies did not define the spe-
cific coding algorithm used [25, 29, 58, 62]. The common-
est ICD-9 code used was 428.x (heart failure) alone (17 
studies) or in combination with other codes (20 studies). 
The commonest ICD-10 code used was I50.x (heart fail-
ure) alone (9 studies) or in combination with others (15 
studies). Additional file  1: Tables  S7 and S8 summarize 
the ICD-9 and -10 coding algorithms used respectively, 
while Additional file 1: Table S9 includes a list of all the 
HF codes used in the studies along with their definitions.

Most studies specified the ICD HF code position (pri-
mary, secondary, any) within the database. Among 37 
studies ascertaining acute HF, 4 (11%) studies reported 
algorithms with HF codes in the primary position and 
any position separately [28, 30, 44, 56], 11 (30%) only 
reported algorithms with HF codes in the primary posi-
tion, and 21 (57%) only reported algorithms with codes 
in any position. One study algorithm (2%) used codes in 
positions 1–6 [36].

Ascertainment of acute heart failure
Results of individual studies
Table 1 summarizes the agreement statistics of the main 
study algorithm(s) for each study considering acute 
HF grouped by country (as RCD sources are likely to 
be similar) and ordered by sensitivity or PPV (high-
est to lowest). There was a wide range of performance 
across studies with sensitivities ranging from as low as 
13% to > 90%. Only 8/23 (35%) studies reported a sen-
sitivity > 80%. Although specificity also ranged widely 
between 20 and > 90%, 17/21 (81%) studies reported a 
specificity > 80%.

Meta‑analysis
Sufficient data for meta-analysis was available for 17,986 
GS HF events from 17/37 studies assessing RCD for acute 
HF. The funnel plot for publication bias with the super-
imposed regression line is shown in Additional file  1:  
Figure S2. The p value for the slope coefficient was not sta-
tistically significant (P value = 0.73) indicating a symmetri-
cal funnel plot and a low likelihood of publication bias.

Table  2 provides the summary statistics for acute and 
prevalent RCD algorithms overall and according to the 
diagnostic position of HF codes. The summary sensitiv-
ity and specificity for acute HF studies were 63.5% (95% 
CI 51.3–74.1) and 96.2% (95% CI 91.5–98.3) respectively 
(Table  2). The agreement was similar in studies which 
included codes in the primary diagnostic position and 
any diagnostic position. When the analysis was restricted 
to 14 studies (17,540 GS HF events in total) with > 200 GS 
HF events the summary sensitivity was lower while spec-
ificity remained unchanged (Table 2 and Additional file 1: 
Figure S3a). When the analysis was restricted to 9 studies 
at low risk of bias, summary sensitivity was lower while 
specificity was similar (Table 2).

Figure  2 shows the forest plot of paired sensitivities 
and specificities for acute HF studies. There was marked 
heterogeneity between studies ascertaining acute HF (I2 
99.3% and 99.7% for sensitivity and specificity respec-
tively). The SROC plot for acute HF (Fig. 3a) has a wide 
95% prediction region with individual study algorithms 
scattered away from the HSROC curve also suggest-
ing considerable heterogeneity between studies, with 
no clear relationship between sensitivity and specificity. 
Heterogeneity remained regardless of the coding position 
used (Additional file 1: Figure S4).

Subgroup analysis
Given the significant heterogeneity between studies, 
Additional file  1: Table  S10 summarises agreement sta-
tistics for studies ascertaining acute HF according to 
other subgroups of interest that are potential sources of 
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heterogeneity. While there were differences in summary 
statistics between subgroups, they had wide confidence 
intervals. However, algorithms from studies using medi-
cal records as the GS data source reported a higher sum-
mary sensitivity (72.6%, 95% CI 61.2–81.7) than those 
using registry data (41.2%, 95% CI 30.3–53.0) with simi-
lar summary specificities. Four studies with < 1500 par-
ticipants had higher summary sensitivity (75.3%, 95% CI 
41.4–93.0) and lower specificity (76.1%, 95% CI 63.2–
85.4) compared to 13 studies with ≥ 1500 participants 
(59.8%, 95% CI 48.2–70.5 and 97.9%, 95% CI 95.4–99.1 
respectively).

There was considerable heterogeneity with I2 ≥ 98% 
within all subgroups (Additional file 1: Table S10). Some 
of these subgroups only included a small number of stud-
ies and the summary results should be interpreted with 
caution.

Ascertainment of prevalent heart failure
Results of individual studies
Table 3 summarizes the agreement statistics of the main 
study algorithm(s) for each study ascertaining prevalent 
HF grouped by country and ordered by sensitivity or PPV 
(highest to lowest).

There was a wide range of performance across studies 
similar to acute HF studies, but a specificity ≥ 90% was 
reported by all 22 studies reporting specificities while 
only 27% reported a sensitivity ≥ 80%.

Meta‑analysis
Twenty-one of 24 studies (including 19,840 GS HF 
events) ascertaining prevalent HF provided sufficient 
data  for meta-analysis. Statistical testing for publication 

bias showed no significant asymmetry (P value = 0.57) 
indicating a low likelihood of publication bias (Addi-
tional file 1: Figure S2). The overall summary sensitivity 
and specificity were 63.7% (95% CI 55.3–71.3) and 98.1% 
(95% CI 97.0–98.8) respectively (Table  2). The result of 
restricting the analysis to 10 studies with > 200 GS events 
was similar to the impact on acute HF (Table 2 and Addi-
tional file  1: Figure  S3b). Restricting the analysis to 8 
studies at low risk of bias produced similar summary sen-
sitivity and specificity to the overall result (Table 2).

Figure 4 shows the forest plot of paired sensitivities and 
specificities for prevalent HF studies. There was signifi-
cant heterogeneity between studies similar to acute HF 
studies (Table 2, Fig. 3b, Additional file 1: Figure S5).

Discussion
RCD sources are becoming increasingly accessible to 
researchers and are an invaluable resource for cost-
effective, streamlined clinical research. The present 
study demonstrated that acute HF outcomes ascer-
tained using RCD have good specificity (96%) but lack 
sensitivity (63%) with similar results for prevalent HF 
outcomes. This indicates that whilst RCD-based ascer-
tainment is effective at correctly identifying people 
who have HF, it missed one-third of cases, suggesting 
that further improvements are required in HF out-
come ascertainment methods. The wide confidence 
intervals around the summary estimate of sensitivity 
are compatible with RCD-based ascertainment meth-
ods missing between 45 and 19% of acute heart failure 
cases. Furthermore, there was significant heterogene-
ity between studies and within subgroups which is not 
explained by differences in RCD coding algorithms, the 

Table 2 Agreement statistics for coding algorithms ascertaining acute and prevalent heart failure according to coding position

CI indicates confidence intervals, HF heart failure, I2 I2 statistic describing the percentage of variation across studies that is due to heterogeneity rather than chance, 
N number of study algorithms (the same study can contribute > 1 algorithm in the subgroups if > 1 diagnostic position used, or the same study assessed acute and 
prevalent HF)

Coding algorithms according to 
event type and code position

Algorithms 
(N)

Sensitivity (95% CI) I2 for sensitivity (95% CI) Specificity (95% CI) I2 for specificity (95% CI)

Acute HF

 All 17 63.5% (51.3–74.1) 99.3 (99.0–99.2) 96.2% (91.5–98.3) 99.7 (99.6–99.7)

 All studies with > 200 GS events 14 59.8% (48.1–70.5) 99.3 (99.1–99.4) 96.2% (92.1–98.2) 99.6 (99.6–99.7)

 Studies at low risk of bias 9 55.5% (45.1–65.4) 98.9 (98.7–99.2) 97.2% (89.7–99.3) 99.7 (99.7–99.8)

 Any diagnostic position 13 62.3% (47.7–75.0) 99.5 (99.4–99.6) 94.2% (84.0–98.1) 99.7 (99.7–99.8)

  1ry diagnostic position 7 71.0% (49.4–86.0) 99.8 (99.7–99.8) 97.8% (93.4–99.3) 99.7 (99.7–99.8)

Prevalent HF

 All 21 63.7% (55.3–71.3) 98.6 (98.3–98.8) 98.1% (97.0–98.8) 98.7 (98.5–98.9)

 All studies with > 200 GS events 10 60.8% (50.9–70.6) 99.4 (99.3–99.5) 98.1% (96.4–99.0) 99.2 (99.0–99.4)

 Studies at low risk of bias 8 64.3% (54.0–73.4) 98.9 (98.6–99.2) 97.7% (96.2–98.6) 97.9 (97.2–98.6)

 Any diagnostic position 17 63.0% (53.9–71.3) 98.7 (98.4–98.9) 98.2% (96.9–99.0) 99.0 (98.8–99.2)

  2ry diagnostic position 4 66.4% (45.8–82.2) 99.2 (98.9–99.5) 97.1% (96.0–98.0) 88.9 (79.6–98.3)
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GS or the country of origin, study size, or year of pub-
lication, suggesting there may be other factors such as 
differences in the populations studied. Therefore, both 
the summary statistics and subgroup analysis must be 
interpreted with caution.

A previous review suggested that the use of broader 
parameters along with laboratory and prescription data 
may help identify more cases [13]. However, this study 
has not been able to confirm this, as there were only a few 
studies using these sources. Eight studies used algorithms 

Fig. 2 Forest plot of paired sensitivities and specificities of study algorithms ascertaining acute heart failure. Legend: Algorithms sorted 
by diagnostic code position. Summary points estimated using a bivariate random effects model. CI indicates confidence intervals; FN, false 
negatives; FP, false positives;  I2,  I2statistic describing the percentage of variation across studies that is due to heterogeneity rather than chance; TN, 
true negatives and TP, true positives

Fig. 3 SROC plots for the diagnostic accuracy of coding algorithms ascertaining acute and prevalent heart failure. Legend: a Acute heart failure (HF) 
algorithms and b Prevalent HF algorithms. HSROC indicates hierarchical summary receiver operating characteristic curve, grey circle, the sensitivity 
and (1‑specificity) of an individual study with the size of the circle proportionate to study size; summary point, summary sensitivity, and specificity; 
95% confidence region, 95% confidence region for the summary point, and the 95% prediction region, the area in which we can say with 95% 
certainty the true sensitivity and specificity of a future study will be contained
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combining different sources, coding combinations, peri-
ods of data identification etc. [23, 31, 33, 39, 57, 59, 76, 
77]. However, the sensitivity in these studies was no dif-
ferent from other studies with simpler algorithms and 
RCD sources, indicating that the use of complex algo-
rithms did not necessarily improve sensitivity [23, 33, 76]. 
Using multiple codes from the same source compared to 
I50x/428x alone (broad vs narrow algorithms) has also 
not led to a significant increase in sensitivity for acute HF 
studies (67.1% vs 70.7%) in this meta-analysis (Additional 
file  1: Table  S10). However, this comparison is again 
between the results of different studies. One study of 99 
GS events compared several narrow versus broad coding 
definitions and found no difference in diagnostic accu-
racy [76]. Although using machine learning algorithms or 
keyword searches of free-text entries improved sensitiv-
ity this came at the cost of lower specificity in individual 
studies [72, 73].

Characteristics of better performing algorithms
There were 5 studies with acute HF algorithms that 
performed above the estimated average with sensitivi-
ties > 75% while maintaining specificities > 90% [27, 28, 
32, 47, 79]. However, two of these used re-coded medi-
cal records as the GS to assess coding practices [28, 79] 
and all of these studies were considered ‘at risk’ of bias. 
The use of recoded data may not be a true reflection 

of the actual presence or absence of disease and may 
explain the high concordance. In contrast, three stud-
ies using registry data as the GS source had worse 
sensitivities than average (Table  1). This suggests that 
differences in the GS may explain some of the varia-
tion between studies. The only commonalities of the 
remaining 3 high-performing studies were the use of 
ICD-9 coded inpatient HDD as the RCD source and 
adjudicated medical records as the GS.

Prevalent HF studies performed better with 12 stud-
ies demonstrating sensitivities > 75% while maintain-
ing specificities > 96%. Five of these studies used RCD 
from Canadian hospital discharge abstract databases 
which are coded according to national standards [63, 
65, 72, 76, 79]. One of these combined HDD with phy-
sician billing data obtaining a sensitivity and specific-
ity of 84.8% and 97.0% respectively (Table 3) [76]. One 
Canadian study increased its sensitivity from 57.4% 
(95% CI 51.8–63.0) using an ICD-10 code search of 
HDD alone to 83.3% (95% CI 73.9–72.8%) by combin-
ing the code search with a machine learning algorithm 
of unstructured free-text entries while maintain-
ing specificity [72]. Similar results were obtained by 
a German study where combining an ICD-10 code 
search of HDD with a machine learning algorithm 
of unstructured free-text improved sensitivity from 
49.5% (95% CI 42.8–56.3) to 83.8% (95% CI 78.3–88.4) 

Fig. 4 Forest plot of paired sensitivities and specificities of study algorithms ascertaining prevalent heart failure. Legend: Algorithms sorted 
by diagnostic code position. Summary points are estimated using a bivariate random effects model. CI indicates confidence intervals; FN, false 
negatives; FP, false positives;  I2,  I2 statistic describing the percentage of variation across studies that is due to heterogeneity rather than chance; TN, 
true negatives and TP, true positive
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[73]. The study with the highest sensitivity, specificity, 
and kappa scores was an Australian study which again 
used re-coded medical records as the GS, which may 
explain the high concordance [68].

Limitations of review
There are some limitations to this review. The availability 
of agreement statistics and information such as the cod-
ing algorithms used was variable and made direct com-
parison between all studies difficult. The quality of the 
available studies was variable with about half of studies 
assessed as ‘at risk’ of bias. However, restricting to studies 
with ‘low risk’ of bias resulted in similar summary esti-
mates of sensitivity and specificity.

This meta-analysis utilizes the currently recom-
mended bivariate and HSROC models which are ran-
dom effects models that may give undue weight to 
smaller studies. However, the aim of the meta-analysis 
is not to present an exact summary but an overall esti-
mate of the likely average sensitivity and specificity of 
using RCD for ascertainment of HF outcomes. The 
potential impact of using random-effects meta-analysis 
was assessed by doing an additional analysis limited to 
studies with > 200 GS events.

The comparisons between the different algorithms 
were limited as they were assessed in diverse study popu-
lations rather than within the same population, requir-
ing cautious interpretation of the summary statistics and 
subgroup analysis. For example, a possible impact of the 
coding position was demonstrated in the meta-analysis 
results, with studies ascertaining acute HF in the primary 
position having better summary sensitivity and specific-
ity than those using codes in any position (Table 2). How-
ever, four acute HF studies assessing the impact of coding 
position on diagnostic performance within each study all 
showed that using codes in the primary position reduces 
sensitivity and improves specificity compared to codes in 
any position (Table 1) [28, 30, 44, 56].

This review was also restricted to English language arti-
cles and 24 abstract-only studies were excluded. This may 
have led to publication bias along with any studies that 
may have been withheld from publication due to poor 
validation statistics. However, there was no statistically 
significant publication bias detected.

The WHO ICD-8, -9, and -10 codes do not support 
separate coding of HF sub-types (e.g., HF with pre-
served ejection fraction). Although some studies did 
include additional codes from the ICD-CM codes (USA) 
and the ICD-CA codes (Canada), this review could only 
assess the ascertainment of acute HF and prevalent HF 
irrespective of subtype. The implementation of the new 
WHO ICD-11 codes, which include heart failure codes 
capturing preserved, mid-range, and reduced ejection 

fraction, may allow HF subtypes to be captured in the 
future [80].

Practical implications and future directions
When using acute HF outcomes to assess treatment 
effects in trials, a high false negative rate (low sensitivity) 
will have no impact on the point estimate of the overall 
treatment effect (provided the missing events are evenly 
distributed between the control arm and active arm), but 
it will reduce the statistical power of the trial and lead 
to widening of confidence intervals. In contrast, low 
specificity (high false positive rate) can lead to underes-
timation of treatment effects. Therefore, it is important 
to ensure that any steps taken to improve the sensitiv-
ity of HF algorithms have minimal impact on specific-
ity. A logical way to achieve this may be to broaden the 
diagnostic codes used to capture HF (and/or combine 
more than one data source) as attempted by some stud-
ies and add a second method to maintain specificity such 
as a manual review of RCD records by clinicians to con-
firm or refute suspected events. This second method is 
less resource-intensive than GS adjudication of medical 
records and may improve diagnostic accuracy in a simi-
lar way to using machine learning algorithms on free 
text entries but has not been used in any of the studies 
reviewed [72, 73].

Finally, the considerable variation in agreement sta-
tistics between studies may be related to differences in 
coding practices. Therefore, any new RCD source or 
ascertainment method is likely to require validation prior 
to use for HF outcome ascertainment.

Conclusions
While there is significant heterogeneity in studies assess-
ing RCD-based HF outcome ascertainment, this study 
confirms that the presence of HF codes in RCD correctly 
identifies true HF but significantly underestimates events. 
Strategies used to improve case identification include the 
use of broader coding definitions, multiple data sources, 
and machine learning algorithms of free text data. How-
ever, these methods were not always successful and at 
times reduced specificity in individual studies. Therefore, 
methods used to improve case identification should also 
focus on minimizing false positives.

Abbreviations
ACD  Administrative claims data
CI  Confidence intervals
GS  Gold standard
HDD  Hospital discharge data
HF  Heart failure
ICD  International Classification of Disease
NPV  Negative predictive value
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